Math, asked by mahisolanki706, 3 months ago


 \frac{6}{3 \sqrt{2} - 2 \sqrt{3}  }  = 3 \sqrt{2}  - a \sqrt{3}
find the value of a​

Answers

Answered by Anonymous
4

GIVEN :-

 \\  \sf \:  \dfrac{6}{3 \sqrt{2} - 2 \sqrt{3}  }  = 3 \sqrt{2}  - a \sqrt{3}  \\  \\

TO FIND :-

  • Value of a.

 \\

SOLUTION :-

We have ,

 \\  \sf \:  \dfrac{6}{3 \sqrt{2}  - 2 \sqrt{3} }  \\

Rationalising the denominator,

Rationalising factor is 3√2 + 2√3.

Multiplying numerator and denominator with (3√2 + 2√3) ,

 \\ \implies  \sf \:  \dfrac{6}{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \dfrac{3 \sqrt{2} + 2 \sqrt{3}  }{3 \sqrt{2} + 2 \sqrt{3}  }  \\  \\  \\   \implies\sf \:  \dfrac{6(3 \sqrt{2} + 2 \sqrt{3})  }{(3 \sqrt{2} - 2 \sqrt{3}  )(3 \sqrt{2} + 2 \sqrt{3} ) }  \\

In denominator,

★ (a-b)(a+b) = a² - b²

  • a = 3√2
  • b = 2√3

 \\  \implies \sf \:  \dfrac{18 \sqrt{2} + 12 \sqrt{3}  }{( {3 \sqrt{2}) }^{2}   - ( {2 \sqrt{3} )}^{2} }  \\  \\  \\  \implies \sf \:  \dfrac{18 \sqrt{2} + 12 \sqrt{3}  }{18 - 12}  \\  \\  \\  \implies \sf \:  \dfrac{18 \sqrt{2} + 12 \sqrt{3}  }{6}  \\  \\

   \implies \sf \:  \dfrac{18 \sqrt{2} }{6}  +  \dfrac{12 \sqrt{3} }{6}  \\  \\  \\  \implies  \underbrace{\sf \: 3 \sqrt{2}  + 2 \sqrt{3} } \\  \\

This is in the form of 3√2 + a√3 .

Hence , a = 2.

Similar questions