Math, asked by Milit, 2 months ago


 \frac{7 {}^{3} }{7 {}^{x - 2} }  = 7 {}^{7}

Answers

Answered by anindyaadhikari13
2

ANSWER.

  • x = -2

SOLUTION.

Here, it's given that,

 \tt \longrightarrow \dfrac{ {7}^{3} }{ {7}^{x - 2} } =  {7}^{7}

We know that,

 \tt \mapsto \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

So,

 \tt \longrightarrow {7}^{3 - (x - 2)} =  {7}^{7}

 \tt \longrightarrow {7}^{3 -x + 2} =  {7}^{7}

 \tt \longrightarrow {7}^{5 - x} =  {7}^{7}

Comparing base, we get,

 \tt \longrightarrow 5 - x=7

 \tt \longrightarrow x=5 - 7

 \tt \longrightarrow x= - 2

So, the value of x is -2.

Answered by SANDHIVA1974
4

Answer:

ANSWER.</p><p></p><p>x = -2</p><p></p><p>SOLUTION.</p><p></p><p>Here, it's given that, </p><p>[tex] \tt \longrightarrow \dfrac{ {7}^{3} }{ {7}^{x - 2} } =  {7}^{7}

We know that,

 \tt \mapsto \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

So,

 \tt \longrightarrow {7}^{3 - (x - 2)} =  {7}^{7}

 \tt \longrightarrow {7}^{3 -x + 2} =  {7}^{7}

 \tt \longrightarrow {7}^{5 - x} =  {7}^{7}

Comparing base, we get,

 \tt \longrightarrow 5 - x=7

 \tt \longrightarrow x=5 - 7

 \tt \longrightarrow x= - 2

★ So, the value of x is -2.[/tex]

Similar questions