Math, asked by uajjwal9, 1 year ago


  \frac{7 + 4 \sqrt {3}  } {7 - 4 \sqrt{3} }  = a + b \sqrt{3} find \: a \: and \: b

Answers

Answered by arjun08
0
Hey buddy, here is your answer.

We have to rationalise it,
therefore, the equation would be,

 \frac{7 + 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}
 \frac{49 + 28 \sqrt{3}  + 28 \sqrt{3} + 48 }{(7 - 4 \sqrt{3})(7 + 4 \sqrt{3})  }  = a + b \sqrt{3}
Since, (a-b)(a+b) = (a^2-b^2)

 \frac{97 + 56 \sqrt{3} }{ {7}^{2} -  {(4 \sqrt{3} )}^{2}  }  = a + b \sqrt{3}
 \frac{97 + 56 \sqrt{3} }{49 - 48} = a + b \sqrt{3}
 \frac{97 + 56 \sqrt{3} }{1}  = a + b \sqrt{3}
 \frac{97}{1}  +  \frac{56 \sqrt{3} }{1}  = a + b \sqrt{3}
On comparing,
we get,

a = 97
&
b \sqrt{3}  = 56 \sqrt{3}  \\ therefore \:  \: b = 56
Hope it helps you.
Plz mark me as brainliest.
Similar questions