Math, asked by rajlanjhi19978, 2 months ago

\:\frac{7x + 14}{3}  - \frac{17 - 3x}{5}  = 6x - \frac{4x + 2}{3}  - 5 Solve for x ​

Answers

Answered by Anonymous
70

\qquad\leadsto\quad \sf \pink{\:\dfrac{7x + 14}{3}  - \dfrac{17 - 3x}{5}  = 6x - \dfrac{4x + 2}{3}  - 5}

\qquad\leadsto\quad \sf \:\dfrac{5(7x + 14) - 3(17 - 3x)}{15} =\dfrac{18x - (4x + 2) - 15}{3}

\qquad\leadsto\quad \sf \:\dfrac{35x + 70 - 51  + 9x}{15} =\dfrac{18x - 4x - 2 - 15}{3}

\qquad\leadsto\quad \sf \:\dfrac{44x + 19}{15} =\dfrac{14x -17}{3}

\qquad\leadsto\quad \sf \:3(44x + 19) = 15(14x - 17)

\qquad\leadsto\quad \sf \:44x + 19= 5(14x - 17)

\qquad\leadsto\quad \sf \:44x + 19= 70x - 85

\qquad\leadsto\quad \sf \: - 26x =  - 104

\qquad\leadsto\quad \sf \: 26x =  104

\qquad\leadsto\quad \sf \:x =\cancel{ \dfrac{104}{26}}

\qquad\leadsto\quad \sf \pink{\:x = 4}

Verification :-

LHS

\qquad\leadsto\quad \sf \purple{\dfrac{7x + 14}{3}  - \dfrac{17 - 3x}{5}}

On substituting x = 4, we get

 \qquad\leadsto\quad \sf \:  \:\:\dfrac{7(4)+ 14}{3}  - \dfrac{17 - 3(4)}{5}

\qquad\leadsto\quad \sf   \:\:\dfrac{28+ 14}{3}  - \dfrac{17 -12}{5}

\qquad\leadsto\quad \sf  \:  \:\:\dfrac{42}{3}  - \dfrac{5}{5}

  \qquad\leadsto\quad \sf \:  \:14 - 1

 \qquad\leadsto\quad \sf \purple{ \:  \:13}

R.H.S

\qquad\leadsto\quad \sf \purple{\:6x - \dfrac{4x + 2}{3}  - 5}

On Substituting x = 4, we get

\qquad\leadsto\quad \sf   \:  \:\:6(4) - \dfrac{4(4) + 2}{3}  - 5

 \qquad\leadsto\quad \sf \:  \:\:24 - \dfrac{16 + 2}{3}  - 5

 \qquad\leadsto\quad \sf  \:\:19 - \dfrac{18}{3}

\qquad\leadsto\quad \sf  \:  \:\:19 -6

\qquad\leadsto\quad \sf \purple{\:  \:\:13}

  • Hence,( Verified..!!)
Similar questions