Math, asked by zeelpanchal456, 1 month ago


 \frac{ 8  ^ {   ^ {  \frac{ 1  }{ 3  }    }    }   \times  16  ^ {  \frac{ 1  }{ 3  }    }    }{ 32  ^ {  \frac{ -1  }{ 3  }    }    }

Attachments:

Answers

Answered by sivasubramani894
0

Answer:

tan ø is the tripod of the nucleusp

Step-by-step explanation:

Stationaryjajajajqjqjqjqjnqqnnqnq Ahhahahahahahahahahahahhwhwwhhsha காதஆகரக்க Ahahabnana jaha jana ka jan Ajjajajakaoaoaiakajanabababab Jahahhahahaha

Answered by brokendreams
0

The answer of this question is 16.

Step-by-step explanation:

We are given,

\frac{8^{\frac{1}{3} } *16^{\frac{1}{3} }}{32^{\frac{-1}{3} }}

and we have to solve this and get the answer of this question

  • Formula used,
  1. x^{a} *x^{b}=x^{a+b}
  2. \frac{x^{a}}{x^{b}} =  x^{a-b}
  • Solving given term,

we have,

\frac{8^{\frac{1}{3} } *16^{\frac{1}{3} }}{32^{\frac{-1}{3} }}

we can write 8, 16 and 32 as

8=2*2*2

16=2*2*2*2

32=2*2*2*2*2

or 8=2^{3}

16=2^{4}

32=2^{5}

by writing this we can make bases of power same.

new equation we get is,

\frac{(2^{3}) ^{\frac{1}{3} } *(2^{4} )^{\frac{1}{3} }}{(2^{5} )^{\frac{-1}{3} }}

\frac{2 ^{\frac{3}{3} } *2^{\frac{4}{3} }}{2^{\frac{-5}{3} }}

now by using formula(1) our numerator is,

{2 ^{\frac{3}{3} } *2^{\frac{4}{3} }}=2^{\frac{3}{3}+{\frac{4}{3} }

            =2^{\frac{3+4}{3} }

            =2^{\frac{7}{3} }

we get numerator as 2^{\frac{7}{3} }.

by using new numerator we get the fraction as,

\frac{2^{\frac{7}{3} }}{2^{\frac{-5}{3} }}

now by using formula(2),

2^{\frac{7}{3}-\frac{(-5)}{3}  }

2^{\frac{7}{3}+\frac{5}{3}  }

=2^{\frac{7+5}{3}  }

=2^{\frac{12}{3}}

=2^4}

and 2^{4} =16

so the answer of this question is 16.

Similar questions