Math, asked by lokesh198633, 10 months ago


 \frac{(81) {}^{n} . {3}^{5}  -  {3}^{4n - 4} .243 }{  {9}^{2n} .3}  -  \frac{4. {3}^{n} }{ {3}^{ n+1 }  -  {3}^{n} }

Answers

Answered by rishu6845
6

Answer:

\boxed{\huge{78}}

Step-by-step explanation:

\bold{Given}\longrightarrow \\  \dfrac{ {(81)}^{n}  \:  {3}^{5}  -  {3}^{4n - 4}  \: 243}{ {9}^{2n} \: 3 }  -  \dfrac{4 \:  ({3}^{n}) }{ {3}^{n + 1} -  {3}^{n}  }

\bold{To \: find}\longrightarrow \\ value \: of \: given \: expression

\bold{Concept \: used}\longrightarrow \\  \:  \boxed{\huge{ {a}^{m + n}  \:  =  {a}^{m}  \:  {a}^{n} }} \\ \boxed{\huge{ { ({a}^{m} )}^{n}  =  {a}^{mn}}}

\bold{Solution}\longrightarrow \\   \dfrac{ {(81)}^{n} \:  {3}^{5}  -  {3}^{4n - 4}   \: 243}{ {9}^{2n}  \:  \: 3}  -  \dfrac{4 \:  \:  {3}^{n} }{ {3}^{n + 1} \:  -  {3}^{n}  }

 =  \dfrac{ { ({3}^{4} )}^{n}  \:  {3}^{5}  -  {3}^{4n - 4}  \:  {3}^{5} }{ { ({3}^{2}) }^{2n} \:  \: 3 }  -  \dfrac{4 \:  {3}^{n} }{ {3}^{n}  \: 3 \:  -  {3}^{n} }

 =  \dfrac{ {3}^{4n} \:  {3}^{5 }   -  {3}^{4n - 4 + 5} }{3 \:  {3}^{4n} }  -  \dfrac{4 \:  \:  \: ( {3}^{n} )}{ {3}^{n}(3 - 1) }

 =  \dfrac{ {3}^{4n + 5}  -  {3}^{4n + 1} }{3 \:  \:  {3}^{4n} }  -  \dfrac{4}{2}

 =  \dfrac{ {3}^{4n}  \:  {3}^{5}  -  {3}^{4n} \: 3 }{3 \:  \:  {3}^{4n} }  - 2

 =   \dfrac{ {3}^{4n} \: ( {3}^{5}  - 3) }{3 \:  \:  {3}^{4n} }  - 2

 =  \dfrac{243 - 3}{3} \:  \:   -  \:  \: 2

 =  \dfrac{240}{3}  \:  \:  -  \:  \: 2

 = 80 \:  \:  -  \:  \: 2

 = 78

Similar questions