Math, asked by bangtangranger, 11 months ago

\frac{9^{\frac{1}{3} } *27^{\frac{-1}{3} } }{3^{\frac{1}{6} } *3^{\frac{-2}{3} } }

Please solve with COMPLETE steps and solutions

Answers

Answered by Anonymous
0

Answer:

3^{(1/6)} ≈ 1.201

Step-by-step explanation:

Attachments:
Answered by amitnrw
2

Given :   \frac{9^{\frac{1}{3} } *27^{\frac{-1}{3} } }{3^{\frac{1}{6} } *3^{\frac{-2}{3} } }

To find :  Simplify

Solution:

Solving numerator 1st

9^{\frac{1}{3}}  =   (3^2)^{\frac{1}{3}}    = 3^{\frac{2}{3}}

27^{\frac{-1}{3} }  =  (3^3)^{\frac{-1}{3} }  = 3^{-1}

3^{\frac{2}{3}}  \times 3^{-1}  = 3^{\frac{ 2}{3} - 1 }  = 3^{\frac{-1}{3}

now Solving denominator

{3^{\frac{1}{6} } \times 3^{\frac{-2}{3} } } = {3^{\frac{1}{6} +\frac{-2}{3} }  = 3^{\frac{-3}{6} } =  3^{\frac{-1}{2} }

Hence

\frac{9^{\frac{1}{3} } *27^{\frac{-1}{3} } }{3^{\frac{1}{6} } *3^{\frac{-2}{3} } }    =  \frac{ 3^{\frac{-1}{3}} } {3^{\frac{-1}{2}}}

= 3^{\frac{-1}{3} + \frac{1}{2 } }    =  3^{\frac{1}{6}

= 3^{\frac{1}{6}

\frac{9^{\frac{1}{3} } *27^{\frac{-1}{3} } }{3^{\frac{1}{6} } *3^{\frac{-2}{3} } }    = 3^{\frac{1}{6}

Learn more:

[81^1/2(64^1/3+125^1/3)]^1/4

https://brainly.in/question/3506670

Can anyone pls solve a^9-b^9.pls - Brainly.in

https://brainly.in/question/7556423

Similar questions