Math, asked by anitakoranga507, 2 months ago


 \frac{9n \times  {3}^{5 \times ( {27)}^{3} } }{3 \times ( {81)}^{4} }
find the value of n​

Answers

Answered by harshitha202034
1

Step-by-step explanation:

\large \frac{ {9}^{n}  \times  {3}^{5}  \times  {27}^{3} }{3 \times  {81}^{4} }  \\  \\  \large  =  \frac{ {( {3}^{2} )}^{n} \times  {3}^{5} \times  { ({3}^{3}) }^{3}   }{ {3}^{1}  \times  { ({3}^{4}) }^{4} }  \\  \\  \large  =  \frac{ {(3)}^{2 \times n}  \times  {3}^{5}  \times  {(3)}^{3 \times 3}  }{ {3}^{1}  \times  {(3)}^{4 \times 4} }  \\  \\  \large  =  \frac{ {3}^{2n} \times  {3}^{5}  \times  {3}^{9}  }{ {3}^{1} \times  {3}^{16}  }  \\  \\  \large  =  \frac{ {3}^{2n}  \times  {(3)}^{5 + 9} }{ {(3)}^{1 + 16} }  \\  \\  \large  =  \frac{ {3}^{2n} \times  {3}^{14}  }{ {3}^{17} }  \\  \\  \large  =  \frac{ {3}^{2n} }{ {(3)}^{17 - 14} }  \\  \\  \large  =  \frac{ {3}^{2n} }{ {3}^{3} }  \\  \\ \large  \boxed{ =  \underline{ \underline{ \huge {(3)}^{2n - 3} }}}

Similar questions