Math, asked by amssre13251, 2 months ago

\frac{a}{b} + \frac{b}{a}=2 then (\frac{a}{b})^100 - (\frac{b}{a})^100 =

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{a}{b}  + \dfrac{b}{a}  = 2

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{100}  - {\bigg(\dfrac{b}{a} \bigg) }^{100}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{a}{b}  + \dfrac{b}{a}  = 2

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {b}^{2} }{ab}= 2

\rm :\longmapsto\:{a}^{2}  +  {b}^{2}  =  2ab

\rm :\longmapsto\:{a}^{2}  +  {b}^{2} -   2ab = 0

\rm :\longmapsto\: {(a - b)}^{2}  = 0

\rm :\longmapsto\: a - b= 0

\bf\implies \:a = b

Now, Consider,

\rm :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{100}  - {\bigg(\dfrac{b}{a} \bigg) }^{100}

On substituting a = b, we get

\rm \:  =  \:  \: \: {\bigg(\dfrac{b}{b} \bigg) }^{100}  - {\bigg(\dfrac{b}{b} \bigg) }^{100}

\rm \:  =  \:  \:  {1}^{100} -  {1}^{100}

\rm \:  =  \:  \: 1 - 1

\rm \:  =  \:  \: 0

Hence,

\bf :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{100}  - {\bigg(\dfrac{b}{a} \bigg) }^{100}  = 0

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions