Math, asked by shanis15, 7 months ago


 \frac{ax +b }{bx - a}  = f(x)

find domain and range
(please show the long form of answer)
this is higher secondary chapter called "functions and relations"​

Answers

Answered by bsen910
1

Answer:

Domain is the whole real line except the point a/b. Because if x= a/b then the denominator will be 0 so in that case the fraction will be undefined.

Answered by Yashsoni703
2

Answer:

PLZ MARK ME AS THE BRAINLIEST ANSWER PLZZZ

Step-by-step explanation:

Given f(x) = y =(ax - b)/(cx - a)

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b=> x = (ay - b)/(cy - a)

Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b=> x = (ay - b)/(cy - a)=>f(y) = x = (ay - b)/(cy - a)

HAPPY NAVRATRI TO YOU

Attachments:
Similar questions