find domain and range
(please show the long form of answer)
this is higher secondary chapter called "functions and relations"
Answers
Answer:
Domain is the whole real line except the point a/b. Because if x= a/b then the denominator will be 0 so in that case the fraction will be undefined.
Answer:
PLZ MARK ME AS THE BRAINLIEST ANSWER PLZZZ
Step-by-step explanation:
Given f(x) = y =(ax - b)/(cx - a)
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b=> x = (ay - b)/(cy - a)
Given f(x) = y =(ax - b)/(cx - a)=> y*(cx - a) = ax - b=> cxy-ay = ax - b=>cxy- ax = ay - b=> x*(cy - a) = ay - b=> x = (ay - b)/(cy - a)=>f(y) = x = (ay - b)/(cy - a)
HAPPY NAVRATRI TO YOU