Math, asked by rahul37830, 1 year ago

\frac{ {cos}^{2} \alpha  }{1 - sin \alpha }  +  \frac{ {cos}^{2}  \alpha   }{1 + sin \alpha }

Answers

Answered by Anonymous
5

\mathfrak{\large{\underline{\underline{Answer:-}}}}

2.

\mathfrak{\large{\underline{\underline{</strong><strong>P</strong><strong>r</strong><strong>o</strong><strong>v</strong><strong>e</strong><strong> </strong><strong>that</strong><strong>:-}}}}

\bold{\frac{ {cos}^{2} \alpha }{1 - sin \alpha } + \frac{ {cos}^{2} \alpha }{1 + sin \alpha }}

\mathfrak{\large{\underline{\underline{Proof:-}}}}

\bold{\frac{ {cos}^{2} \alpha }{1 - sin \alpha } + \frac{ {cos}^{2} \alpha }{1 + sin \alpha } }

= \bold{ {cos}^{2}  \alpha  [\frac{1}{1 - sin \alpha }  +  \frac{1}{1 + sin \alpha }] }

= \bold{  {cos}^{2}  \alpha  [\frac{1 + sin \alpha + 1 - sin \alpha  }{(1 - sin \alpha )(1 + sin \alpha )}] }

= \bold{ {cos}^{2}  \alpha ( \frac{2 }{1 -  {sin}^{2}  \alpha } )}

\boxed{\sf{ 1 -  {sin}^{2}  \alpha  =  {cos}^{2}  \alpha  }}

= \bold{ {cos}^{2}  \alpha ( \frac{2}{ {cos}^{2}  \alpha } )}

= \bold{2 }

\boxed{\sf{\frac{ {cos}^{2} \alpha }{1 - sin \alpha } + \frac{ {cos}^{2} \alpha }{1 + sin \alpha } }= 2}

Similar questions