Math, asked by bhaskarbaningpathak, 7 months ago


 \frac{cos \: 45 + 2cos \: 90}{sin \: 45 + 2sin \: 90}
evaluate​

Answers

Answered by prince5132
7

CORRECT QUESTION :-

\\ \implies \sf \: evaluate \:  \:  \dfrac{ \cos45 ^{ \circ}   + 2 \cos90 ^{ \circ} }{ \sin45 ^{ \circ}  + 2 \sin90 ^{ \circ}  } \\

GIVEN :-

 \\ \implies  \sf \: \dfrac{ \cos45 ^{ \circ}   + 2 \cos90 ^{ \circ} }{ \sin45 ^{ \circ}  + 2 \sin90 ^{ \circ}  } \\

TO FIND :-

 \\ \implies \sf \: value \: of \:  \: \dfrac{ \cos45 ^{ \circ}   + 2 \cos90 ^{ \circ} }{ \sin45 ^{ \circ}  + 2 \sin90 ^{ \circ}  } \\

SOLUTION :-

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

★ Refer to the trigonometric ratios table for the required values.

 \implies  \sf \: \dfrac{ \cos45 ^{ \circ}   + 2 \cos90 ^{ \circ} }{ \sin45 ^{ \circ}  + 2 \sin90 ^{ \circ}  }  \\  \\  \\   \implies \sf\dfrac{  \left(\dfrac{1 }{ \sqrt{2}  }  + 2 \times 0 \right)}{  \left(\dfrac{1}{ \sqrt{2} }  \:  + 2 \times 1 \right)} \\  \\  \\  \implies \sf \:  \dfrac{ \left(\dfrac{1}{\sqrt{2}} \right)}{ \left(\dfrac{1+2\sqrt{2}}{\sqrt{2}} \right)}  \\  \\  \implies \sf \dfrac{1}{ \cancel{\sqrt{2}}} \times \dfrac{\sqrt{2}}{1 + 2\ \cancel{\sqrt{2}}} \\ \\ \\ \implies \sf \dfrac{1}{1 + 2\sqrt{2}} \\  \\  \\  \implies \underline{ \boxed{ \red{ \sf \: \dfrac{ \cos45 ^{ \circ}   + 2 \cos90 ^{ \circ} }{ \sin45 ^{ \circ}  + 2 \sin90 ^{ \circ}  }  = \dfrac{1}{1 + 2\sqrt{2}}}}}

The required answer is  \dfrac{1}{1 + 2\sqrt{2}} .


Anonymous: Always Awesome ♥️♥️
Answered by Anonymous
30

Answer:

1/1+2√2

Step-by-step explanation:

=> cos45°+2cos90° / sin45°+2sin90°

=> (1/√2 + 2*0) / (1/√2 + 2*1)

=> (1/√2) / (1+2√2 / √2)

=> 1/√2 × √2 / 1+2√2

=> 1/1+2√2

Therefore, Required value is 1/1+2√2

hope it helps !! ( ◜‿◝ )♡

Similar questions