Math, asked by Anonymous, 11 months ago

\frac{cos \: 45}{sec \: 30 \: + \: cosec \: 30 }

Answers

Answered by Anonymous
2

Answer:

 \frac{ \cos45 \degree}{ \sec30  \degree +  \cosec30  \degree  }  \\ \\  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3}  }  +  2 }   \\ \\  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } }   \\   \\ =  \frac{ \sqrt{3} }{ \sqrt{2} (2 + 2 \sqrt{3}) }  \\   \\ =  \frac{ \sqrt{3}(2 - 2 \sqrt{3}  )}{ \sqrt{2}( {2}^{2} -  {(2 \sqrt{3}) }^{2}   }  \\ \\    =   \frac{ \sqrt{3} (2 - 2 \sqrt{3}) }{ \sqrt{2}(4 - 4 \times 3) }  \\  \\  =  \frac{ \sqrt{6} (2 - 2 \sqrt{3}) }{2(4 - 12)}  \\  \\  =   \frac{ \sqrt{6}(2  - 2 \sqrt{3)} }{-16}

= √6(√3-1)/8

Answered by ITzBrainlyGuy
3

Question:

find the value of

\dfrac{ \cos(45°) }{ \sec(30°)  +  \csc(30°) }

Used formulas:

cos45° = 1/√2

sec30° = 2/√3

cosec30° = 2

Answer:

=  \dfrac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } + 2 }  \\  \\  =  \dfrac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } } \\  \\  =  \dfrac{ \sqrt{3} }{(2 + 2 \sqrt{3}  ) \sqrt{2} }   \\  \\  =  \dfrac{ \sqrt{3} }{2 \sqrt{2} + 2 \sqrt{6}  }  \\  \\  =  \frac{ \sqrt{3} }{2 \sqrt{2} (1 +  \sqrt{3} )} \:

Used concepts:

→ trigonometric ratios

→ trigonometric ratios for standard angles

Similar questions