Math, asked by Inform435, 9 months ago


 \frac{ \cos(5x) \:  -  \:  \cos(3x)  }{ \cos(3x)  -  \cos(5x) }

Answers

Answered by Mysterioushine
11

\huge{\mathcal{\underline{\pink{Solution:-}}}}

\small\rm\bold{\boxed{Cos(A)-Cos(B)\:=\:2Cos(\frac{A+B}{2}).Cos(\frac{A-B}{2})}}

 =  >  \frac{ \cos(5x)  -  \cos(3x) }{ \cos(3x) -  \cos(5x)  }  \\  \\  =  \frac{ 2\cos( \frac{5x + 3x}{2}  ). \cos( \frac{5x - 3x}{2} )  }{2 \cos( \frac{3x + 5x}{2} ). \cos( \frac{3x - 5x}{2} )  }  \\  \\  =  \frac{ \cos( \frac{8x}{2} ) . \cos( \frac{2x}{2} ) }{ \cos( \frac{8x}{2}) . \cos(\frac{ - 2x}{2} ) }  \\  \\  =   \frac{ \cos(4x) . \cos(x) }{ \cos(4x). \cos( - x)  }

\large\rm\bold{\boxed{Cos(-x)\:=\:Cos(x)}}

 =   \frac{ \cos(4x). \cos(x)  }{ \cos(4x). \cos(x)  }  \\  \\  = 1

\large\rm{\therefore{\frac{Cos(5x)-Cos(3x)}{Cos(3x)-Cos(5x)}\:=\:1}}

Similar questions