Math, asked by Rudra1338, 7 months ago


 \frac{ \cos(a) }{1 +  \sin(a) }  +  \frac{1 +  \sin(a) }{ \cos(a) }  = 2 \sec(a)
give the answer

Answers

Answered by Anonymous
65

Answer:

To prove:

\dfrac{\cos A}{1+\sin A} + \dfrac{1+\sin A}{\cos A} = 2\sec A

Solution:

We can solve separately the LHS using trigonometric and algebric identities.

Solving for LHS:

\dfrac{\cos A}{1+\sin A} + \dfrac{1+\sin A}{\cos A}

✦Taking LCM:

\dashrightarrow\dfrac{(\cos A)^2 + (1+\sin A)^2}{(1+\sin A)(\cos A)}

\dashrightarrow\dfrac{\cos^2A + \sin^2A + 1 + 2\sin A}{(\cos A)(1+\sin A)}

\dashrightarrow\dfrac{1 +1+2\sin A}{(\cos A)(1+\sin A)}

\dashrightarrow\dfrac{2+2\sin A}{(1+\sin A)(\cos A)}

\dashrightarrow\dfrac{2(1+\sin A)}{(1+\sin A)(\cos A)}

\dashrightarrow\dfrac{2}{\cos A}

\dashrightarrow2 \sec A

Identities used:

\rightarrow1️⃣sin^2A + cos^2A = 1

\rightarrow2️⃣\dfrac{1}{cosA} = secA

Similar questions