Math, asked by AnanyaBaalveer, 2 days ago


 \frac{ \cos( \theta)^{2} }{1 -  \tan( \theta) }  +  \frac{ \sin( \theta)^{3} }{ \sin( \theta ) -  \cos( \theta)  }  =  \:  \:  \:  1 + \sin( \theta)
Solve for /theta​

Answers

Answered by mathdude500
6

Appropriate Question :-

\rm \: \dfrac{ {cos}^{2} \theta }{1 - tan\theta }  + \dfrac{ {sin}^{3} \theta }{sin\theta  - cos\theta }  = 1 + sin\theta , \: find \: \theta  \\

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm \: \dfrac{ {cos}^{2} \theta }{1 - tan\theta }  + \dfrac{ {sin}^{3} \theta }{sin\theta  - cos\theta }  = 1 + sin\theta  \\

can be rewritten as

\rm \: \dfrac{ {cos}^{2} \theta }{1 - \dfrac{sin\theta }{cos\theta }  }  + \dfrac{ {sin}^{3} \theta }{sin\theta  - cos\theta }  = 1 + sin\theta  \\

\rm \: \dfrac{ {cos}^{2} \theta }{\dfrac{cos\theta  - sin\theta }{cos\theta }  }  + \dfrac{ {sin}^{3} \theta }{sin\theta  - cos\theta }  = 1 + sin\theta  \\

\rm \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta }  + \dfrac{ {sin}^{3} \theta }{sin\theta  - cos\theta }  = 1 + sin\theta  \\

\rm \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta }  + \dfrac{ {sin}^{3} \theta }{ - ( cos\theta - sin\theta ) }  = 1 + sin\theta  \\

\rm \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta }  -  \dfrac{ {sin}^{3} \theta }{ cos\theta - sin\theta }  = 1 + sin\theta  \\

\rm \: \dfrac{ {cos}^{3} \theta  -  {sin}^{3} \theta }{cos\theta  - sin\theta }   = 1 + sin\theta  \\

\rm \: \dfrac{(cos\theta  - sin\theta )( {cos}^{2} \theta + {sin}^{2} \theta  + sin\theta  \: cos\theta )}{cos\theta  - sin\theta }   = 1 + sin\theta  \\

\rm \: 1 + sin\theta  \: cos\theta  \:  =  \: 1 + sin\theta  \\

\rm \:  sin\theta  \: cos\theta  \:  =  \: sin\theta  \\

\rm \:  sin\theta  \: cos\theta  \:  -  \: sin\theta  = 0 \\

\rm \:  sin\theta  \: (cos\theta  \:  -  \: 1)  = 0 \\

\rm\implies \:sin\theta  = 0 \:  \: or \:  \: cos\theta  = 1 \\

\color{green}\rm\implies \:\theta  = n\pi\: \forall \: n \in \: Z \\  \\  \rm \: or \\  \\ \color{green}\rm\implies \:\theta  = 2m\pi\: \forall \: m \in \: Z \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:tanx =  \frac{sinx}{cosx} \: }} \\

\boxed{ \rm{ \: {x}^{3} -  {y}^{3}  = (x - y)( {x}^{2} +  {y}^{2} + xy) \: }} \\

\boxed{ \rm{ \: {cos}^{2}x +  {sin}^{2}x = 1 \: }} \\

\boxed{ \rm{ \:sinx \:  =  \: 0 \: \rm\implies \:x= n\pi\: \forall \: n \in \: Z \: }} \\

\boxed{ \rm{ \:cosx \:  =  \: cosy \: \rm\implies \:x= 2n\pi\: \pm \: y \:  \:  \:  \forall \: n \in \: Z \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions