Answers
Answered by
0
Step-by-step explanation:
To Prove:
\sf \dfrac{1 - \cos \theta }{sin \: \theta} = \dfrac{ \sin \theta}{ 1+ \cos \theta}
sinθ
1−cosθ
=
1+cosθ
sinθ
Solution:
R.H.S
\begin{gathered} = \sf \dfrac{1 - \cos \theta }{sin \: \theta} \\ \\ = \frac{(1 - \cos \theta)(1 + \cos \theta)}{ \sin \theta(1 + \cos \theta)} \\ \\ = \frac{1 - \cos {}^{2} \theta}{ \sin \theta(1 + \cos \theta) } \\ \\ = \sf \frac{sin {}^{2} \theta }{ \sin \theta(1 + \cos \theta) } [ \: \: \because \: { \sin }^{2}\theta= 1 - { \cos }^{2} \theta] \\ \\ \sf = \frac{sin \theta}{1 \: + \cos\theta} \end{gathered}
=
sinθ
1−cosθ
=
sinθ(1+cosθ)
(1−cosθ)(1+cosθ)
=
sinθ(1+cosθ)
1−cos
2
θ
=
sinθ(1+cosθ)
sin
2
θ
[∵sin
2
θ=1−cos
2
θ]
=
1+cosθ
sinθ
Therefore, R.H.S = L.H.S [Proved]
Answered by
16
Attachments:
Similar questions