Math, asked by kashishm840, 1 month ago


 \frac{? \\cot(90 - theta) tan \: theta }{sec {?}^{2}  }  -  \sin( {?}^{2} theta =    \frac{ \tan( {?}^{2} ) }{ \sec( {2}^ ) }

Attachments:

Answers

Answered by Merci93
1

\huge\mathcal{Answer:}

In the given question, take LHS

 \frac{cot (90 - θ) \times tan θ}{ {sec}^{2}  θ}  -  {sin}^{2}  θ

We know that,

\boxed{cot(90 -  θ) = tan θ}

 =  \frac{tan θ \times tan θ}{ {sec}^{2} θ }  -  {sin}^{2}  θ

 =   \frac{ {tan}^{2}  θ}{ {sec}^{2} θ }  -  {sin}^{2}  θ

\boxed { {tan}^{2}  θ =  \frac{ {sin}^{2} θ }{ {cos}^{2}  θ} \:  ;   {sec}^{2}  θ =  \frac{ 1 }{ {cos}^{2}  θ} }

 = (\frac{ {sin}^{2}θ }{ {cos}^{2}θ} \times  {cos}^{2} θ) -  {sin}^{2} θ

 {sin}^{2} θ -  {sin}^{2} θ = 0

LHS = RHS, hence proved.

\frac{cot (90 - θ) \times tan θ}{ {sec}^{2}  θ}  -  {sin}^{2}  θ = 0

Have a good evening!

Similar questions