Math, asked by amsukhadka22, 18 days ago


 \frac{ \cot( \alpha ) +  \tan( \beta )  }{ \cot( \beta )  +  \tan( \alpha ) }  =  \cot( \alpha )  \tan( \beta )
prove it

please​

Answers

Answered by ripinpeace
9

Step-by-step explanation:

 \large \frac{ \cot( \alpha ) + \tan( \beta ) }{ \cot( \beta ) + \tan( \alpha ) } = \cot( \alpha ) \tan( \beta )

 \small Taking  \: L.H.S  ,

 →\large \frac{ \cot( \alpha ) +  \tan( \beta )  }{ \frac{1}{ \tan( \beta )  } +  \frac{1}{ \cot( \alpha ) }  }

  →\large  \frac{ \cot( \alpha ) +  \tan( \beta )  }{ \frac{ \cot( \alpha )  +  \tan( \beta )  }{ \tan( \beta ) \cot( \alpha )  }}

→\large \frac{ \cancel {\cot( \alpha ) +  \tan( \beta ) } }{ { 1}{  }}  \times    \frac{ \cot( \alpha ) \tan( \beta  ) } {  \cancel{ \cot( \alpha )  +  \tan( \beta )   } }

 →\large \green{ \cot( \alpha )  \tan( \beta ) }

 →\small \green{ \cot( \alpha )  \tan( \beta ) }  =   \: R.H.S, hence \:    \: proved

Similar questions