Math, asked by arup59, 7 months ago


 \frac{d}{dx}  \cos( \sqrt{x} )

Solve this problem as soon as possible. Irrelevant answers will be reported.​

Answers

Answered by anshikaverma29
3

\text{Let y = cos$ \sqrt{x} $ . We need to find derivative of y with respect to x .}\\\\ \\\text{i.e, y' = (cos$\sqrt{x}$)' }\\\\\\\frac{dy}{dx}=\frac{d(cos\sqrt{x}) }{dx}\\  \\\\\text{= - sin$\sqrt{x}$ . $\frac{d\sqrt{x} }{dx} $  }\\\\\\\Rightarrow\text{As , (cos x)' = - sinx }\\\\\\\text{= -sin $\sqrt{x} $ . $\frac{1}{2\sqrt{x} } $}\\\\\\\Rightarrow\text{As , ($\sqrt{x} $)' = $\frac{1}{2\sqrt{x} } $}\\\\\\\boxed{\begin{minipage}{2cm}\text{ = - $\frac{sin\sqrt{x} }{2\sqrt{x} } $}\end{minipage}}

Similar questions