Math, asked by umiko28, 10 months ago


 \frac{d}{dx} \: (sin {x}^{2}  + 5)
find the derivative w.r to x​

Answers

Answered by Anonymous
1

Step-by-step explanation:

\tt\  \frac{d}{dx} \: sin( {x}^{2} + 5)  \\  \\ \tt\ \implies:cos( {x}^{2} + 5). \frac{d}{dx} ( {x}^{2}  + 5) \\  \\\tt\ \implies:cos( {x}^{2} + 5) \{  \frac{d}{dx} {x}^{2} +  \frac{d}{dx} 5 \} \\  \\ \tt\ \implies:cos( {x}^{2} + 5) \{ {2x}^{2 - 1}  + 0 \} \\  \\\tt\ \implies: cos( {x}^{2} + 5).2x\\  \\    \boxed{\sf\ \implies:  2x.cos( {x}^{2} + 5)}

Answered by Anonymous
1

Answer:

\boxed{\bf\ \implies:  2x.cos( {x}^{2} + 5)}     \:  \:  \ddot \smile

Step-by-step explanation:

\sf\  \frac{d}{dx} \: sin( {x}^{2} + 5)  \\  \\ \sf\ \implies:cos( {x}^{2} + 5). \frac{d}{dx} ( {x}^{2}  + 5) \\  \\\sf\ \implies:cos( {x}^{2} + 5) \{  \frac{d}{dx} {x}^{2} +  \frac{d}{dx} 5 \} \\  \\ \sf\ \implies:cos( {x}^{2} + 5) \{ {2x}^{2 - 1}  + 0 \} \\  \\\sf\ \implies: cos( {x}^{2} + 5).2x\\  \\    \boxed{\bf\ \implies:  2x.cos( {x}^{2} + 5)}     \:  \:  \ddot \smile

Similar questions