Math, asked by indhu16, 20 days ago


 \frac{d}{dx}  = ( {x}^{3}  + x + 1)^ \frac{4}{3}
Find the derivative ​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\rm{y=\left({x}^{3}+x+1\right)^{\frac{4}{3}}}

\rm{\implies\,\dfrac{dy}{dx}=\dfrac{d}{dx}\left\{\left({x}^{3}+x+1\right)^{\frac{4}{3}}\right\}}

\rm{\implies\,\dfrac{dy}{dx}=\dfrac{4}{3}\left({x}^{3}+x+1\right)^{\frac{4}{3}-1}\cdot\dfrac{d}{dx}\left({x}^{3}+x+1\right)}

\rm{\implies\,\dfrac{dy}{dx}=\dfrac{4}{3}\left({x}^{3}+x+1\right)^{\frac{1}{3}}\cdot\left(3{x}^{2}+1\right)}

\rm{\implies\,\dfrac{dy}{dx}=\dfrac{12{x}^{2}+4}{3}\cdot\sqrt[3]{{x}^{3}+x+1}}

Similar questions