Math, asked by Anonymous, 9 months ago

 \frac{dxe^{\left(2\cos(x)\right)}}{e^{\left(2\cos(x)\right)}+1}

Answers

Answered by Anonymous
160

♣ Qᴜᴇꜱᴛɪᴏɴ :

\Large\boxed{\sf{\dfrac{d\:x\:e^{\left(2\:\cos \left(x\right)\right)}}{e^{\left(2\:\cos \left(x\right)\right)+1}}}}

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\dfrac{dx}{e}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\dfrac{dxe^{2\cos \left(x\right)}}{e^{\left(2\cos \left(x\right)\right)+1}}}

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

\sf{=\dfrac{dxe^{2\cos \left(x\right)}}{e^{2\cos \left(x\right)+1}}}

\mathrm{Apply\:exponent\:rule}:\quad \dfrac{x^a}{x^b}=\dfrac{1}{x^{b-a}}

\sf{\dfrac{e^{2\cos \left(x\right)}}{e^{2\cos \left(x\right)+1}}=\dfrac{1}{e^{2\cos \left(x\right)+1-2\cos \left(x\right)}}}

\sf{\displaystyle=\frac{dx}{e^{2\cos \left(x\right)+1-2\cos \left(x\right)}}}

\mathrm{Add\:similar\:elements:}\:2\cos \left(x\right)+1-2\cos \left(x\right)=1

\boxed{\sf{=\dfrac{dx}{e}}}

Similar questions