Math, asked by hipsterizedoll410, 9 months ago

\frac{\int\ {x^{2}+5x-1 } \, }{\sqrt{x} } dx Please solve this one guys, its urgent!

Answers

Answered by aaravshrivastwa
8

Here, We integrated all the terms step by step.

And at last we used a formula

i.e.

Integration of xⁿ = xⁿ+¹/n+1

Attachments:
Answered by BrainlyTornado
9

ANSWER:

\sf{\frac{2}{5}  \big( {x}^{ \frac{5}{2} }  \big) +  \frac{10}{3}  \big( {x}^{ \frac{3}{2} }  \big)  - 2 \sqrt{x}   + C}

GIVEN:

\displaystyle\int\frac{ {x^{2}+5x-1 } }{\sqrt{x} } dx

TO INREGRATE:

\frac{ {x^{2}+5x-1 } }{\sqrt{x} } dx

FORMULAE:

 \displaystyle \frac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}  \\  \\   \displaystyle \int {x}^{n}  =  \frac{ {x}^{n + 1} }{n + 1}  + C

EXPLANATION:

 \displaystyle  \int\frac{ {x^{2}+5x-1} }{\sqrt{x} } dx  \\  \\  \\  \textsf{let x = t} \\  \\ \\  \int\frac{ {t^{2}+5t-1} }{\sqrt{t} } dx  \\  \\  \\  \int  \bigg(\frac{ {t}^{2} }{ \sqrt{t} } \bigg) dx + \int\bigg( \frac{5t}{ \sqrt{t} } \bigg)dx   - \int\bigg( \frac{1}{ \sqrt{t} } \bigg)dx \\  \\ \\   \int {t}^{(2 -  \frac{1}{2} )} dx +  5\int {t}^{(1 -  \frac{1}{2} )} dx  - \int {t}^{( -  \frac{1}{2} )} dx \\  \\  \\  \int {t}^{( \frac{3}{2} )} dx +  5\int {t}^{(  \frac{1}{2} )} dx  - \int {t}^{( -  \frac{1}{2} )} dx \\  \\  \\  \frac{ {t}^{( \frac{3}{2} + 1) } }{ \frac{3}{2}  + 1}  + C_1 + 5 \bigg(\frac{ {t}^{( \frac{1}{2} + 1) } }{ \frac{1}{2}  + 1}  \bigg) + C_2 -  {t}^{ (-  \frac{1}{2}  + 1 )}  - C_3 \\  \\  \\    \frac{ {t}^{ \frac{5}{2} } }{ \frac{5}{2} }  + 5  \bigg(\frac{ {t}^{ \frac{3}{2} } }{ \frac{3}{2} }  \bigg) -  \frac{ {t}^{ \frac{ 1}{2} } }{ \frac{ 1}{2} }  + C_1 + C_2 - C_3 \\  \\  \\\textsf{Substitute t   = x} \\  \\   \frac{2}{5}  \big( {x}^{ \frac{5}{2} }  \big) +  \frac{10}{3}  \big( {x}^{ \frac{3}{2} }  \big)  - 2 \sqrt{x}   + C

\textsf{HERE C IS A CONSTANT OF INTEGRATION } \\ \textsf{AND IS EQUAL TO $C_1$ + $C_2$ - $C_3$}

Similar questions