Math, asked by diwakarpathak615, 1 day ago

\frac{\left(m+\left(mn^2\right)^{\frac{1}{3}}+\left(m^2n\right)^{\frac{1}{3}}\right)}{m-n}\cdot \left(1-\frac{n^{\frac{1}{3}}}{m^{\frac{1}{3}}}\right)\\

Answers

Answered by veerapushkar
0

Answer:

1.

Step-by-step explanation:

 \frac{(m + {(m {n}^{2} )}^{ \frac{1}{3} }  +   {{(m}^{2}n)}^{ \frac{1}{3} }  )}{m - n}  \times (1 -  \frac{ {n}^{ \frac{1}{3} } }{ {m}^{ \frac{1}{3} } } )  \\ =  \frac{(m +  {m}^{ \frac{1}{3}}  {n}^{ \frac{2}{3} } + {m}^{ \frac{2}{3} } {n}^{ \frac{1}{3} }  )  }{m - n}  \times  \frac{( {m }^{ \frac{1}{3} } -  {n}^{ \frac{1}{3} }  )}{ {m}^{ \frac{1}{3} } }  \\  =  (\frac{m}{ {m}^{ \frac{1}{3} } }  +  \frac{ {m}^{ \frac{1}{3} } {n}^{ \frac{2}{3} }  }{ {m}^{ \frac{1}{3} } }  +  \frac{ {m}^{ \frac{2}{3} }  {n}^{ \frac{1}{3} } }{ {m}^{ \frac{1}{3} } } ) \times  \frac{( {m}^{ \frac{1}{3} }  -  {n}^{ \frac{1}{3} } )}{m - n}  \\  = ( {m}^{ \frac{2}{3} }  +  {n}^{ \frac{2}{3} }  +  {m}^{ \frac{1}{3}  }{n}^{ \frac{1}{3}  } ) \times  \frac{ {m}^{ \frac{1}{3} }  -  {n}^{ \frac{1}{3} } }{m - n}  \\  =  \frac{m  - n -  {m}^{ \frac{2}{3} }  {n}^{ \frac{ 1 }{3} }  +   {m}^{ \frac{1}{3} }  {n}^{ \frac{2}{3} }  +  {m}^{ \frac{2}{3} }   {n}^{ \frac{1}{3} }  -  {m}^{ \frac{1}{3} } {n}^{ \frac{2}{3} }  }{m - n}  \\  =  \frac{m - n}{m - n}  \\  = 1

Similar questions