Math, asked by sadeemsattar01, 2 months ago


 (\frac{n}{2} ) + ( \frac{n + 1}{2} ) = n { }^{2}

Answers

Answered by harshitha202034
0

Answer:

 \frac{n}{2}  +  \frac{n + 1}{2} =  {n}^{2}   \\  \frac{n + n + 1}{2}  =  {n}^{2}  \\  \frac{2n + 1}{2}  =  {n}^{2}  \\ 2n + 1 =  {n}^{2}  \times 2 \\ 2n + 1 = 2 {n}^{2}  \\ 2 {n}^{2}  - 2n - 1 = 0 \\ n =  \frac{ - b± \sqrt{{b}^{2} - 4ac}}{2a}  \\ n =  \frac{ - ( - 2)± \sqrt{ {( - 2)}^{2} - 4 \times 2 \times ( - 1) } }{2 \times 2}  \\ n =  \frac{2± \sqrt{4 - ( - 8)} }{4}  \\ n =  \frac{2± \sqrt{4 + 8} }{4}  \\ n =  \frac{2± \sqrt{12} }{4}  \\ n =  \frac{2± \sqrt{4 \times 3 } }{4}  \\ n =  \frac{2± \sqrt{ {2}^{2} \times 3 } }{4}  \\ n =  \frac{2±2 \sqrt{3} }{4}  \\ n =  \frac{2 + 2 \sqrt{3} }{4}  \:  \:  \: or \:  \:  \: n =  \frac{2 - 2 \sqrt{3} }{4}  \\  \boxed{ \large n =  \underline{ \underline{ \frac{1 +  \sqrt{3} }{2}}}  \:  \:  \: or \:  \:  \: n =  \underline{ \underline{ \frac{1 -  \sqrt{3} }{2} }}}

Similar questions