Math, asked by narnderasinghsinghna, 5 months ago


 \frac{ \sin(2a) }{1 +  \cos(2a) }  =
(A)tanA
(B)cotA
(C)sinA
(D)cosA

Answers

Answered by BrainlyIAS
77

Question :

\bullet\ \; \sf \red{ \dfrac{sin(2A)}{1+cos(2A)} =\ ?}

A. tan A  ✅

B. cot A

C. sin A

D. cos A

Solution :

We know that ,

\bullet\ \; \sf \pink{sin(2 \theta )=2\ sin \theta .cos \theta}

\bullet\ \; \sf \green{1+cos(2 \theta)= 2cos^2 \theta}

Sub. above formulas in our eq. , we get ,

:\implies \sf \dfrac{sin(2A)}{1+cos(2A)}

:\implies \sf \dfrac{2\ .\ sin\ A\ .\ cos\ A}{2\ cos^2A}

:\implies \sf \dfrac{\cancel{2}\ sin\ A\ .\cancel{cos\ A}}{\cancel{2}\ cos^{\cancel{2}}A}

:\implies \sf \dfrac{sin\ A}{cos\ A}

:\implies \sf tan\ A\ \; \orange{\bigstar}

Option (A)

Answered by nightread
90

Question :-

\frac{sin(2a)}{1+cos(2a)}

(A) tanA

(B) cotA

(C) sinA

(D) cosA

We know that :-

  • sin2\theta=2sin\theta cos\theta
  • 1+cos2\theta=2cos^{2}\theta

Answer :-

\frac{sin(2a)}{1+cos(2a)}

=>\frac{2sinA*cosA}{2cos^{2}A}

=>\frac{2*sinA*cosA}{2*cosA*cosA}

=>\frac{sinA}{cosA}

=>tanA

Hence,

The value of \frac{sin(2a)}{1+cos(2a)} is tanA.

☆ Hope it Helps ☆

@NightRead

Similar questions