Math, asked by simranpkhrl, 11 months ago


 \frac{ \sin( \alpha ) }{1 +  \cos( \alpha ) }  +  \frac{ \sin( \alpha ) }{1 +  \cos( \alpha ) }  = 2 \csc( \alpha )

Answers

Answered by Anonymous
8

Correct Question:

To Prove :

{\sf{ {\dfrac{sin \alpha}{1 + cos \alpha}} + {\dfrac{1 + cos \alpha}{sin \alpha}} = 2 cosec \alpha}}

Step-by-step explanation:

L.H.S. = {\sf{ {\dfrac{sin \alpha}{1 + cos \alpha}} + {\dfrac{1 + cos \alpha}{sin \alpha}} }}

______________________________

\Longrightarrow{\sf{ {\dfrac{sin \alpha (sin \alpha) + 1 + cos \alpha (1 + cos \alpha) }{ (1 + cos \alpha)(sin \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{ (sin \alpha)^2 + (1 + cos \alpha)^2}{ sin \alpha (1 + cos \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{sin^2 \alpha + (1 + cos \alpha)^2}{ sin \alpha (1 + cos \alpha)}}}}

______________________________

{\boxed{\tt{Identity \ : \ (a + b)^2 = a^2 + b^2 + 2ab}}}

{\sf{Here, \ a = 1, \ b = cos \alpha}}

______________________________

\Longrightarrow{\sf{ {\dfrac{sin^2 \alpha + [ (1)^2 + (cos \alpha)^2 + 2(1)(cos \alpha) ] }{ sin \alpha (1 + cos \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{sin^2 \alpha + [ 1 + cos^2 \alpha + 2 cos \alpha ]}{ sin \alpha (1 + cos \alpha)}}}}

______________________________

Opening the bracket.

\Longrightarrow{\sf{ {\dfrac{sin^2 \alpha + 1 + cos^2 \alpha + 2 cos \alpha}{sin \alpha (1 + cos \alpha)}}}}

______________________________

{\boxed{\tt{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{1 + 1 + 2 cos \alpha}{sin \alpha (1 + cos \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{2 + 2 cos \alpha}{sin \alpha (1 + cos \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{2(1 + cos \alpha )}{sin \alpha (1 + cos \alpha)}}}}

______________________________

\Longrightarrow{\sf{ {\dfrac{2}{sin \alpha}}}}

______________________________

We can write this as :

\Longrightarrow{\sf{ 2 \times {\dfrac{1}{sin \alpha}}}}

______________________________

{\boxed{\tt{Identity \ : \ {\dfrac{1}{sin \theta}} = cosec \theta}}}

______________________________

\Longrightarrow{\sf{2 cosec \alpha}}

______________________________

= R.H.S.

Hence, proved !!

Similar questions