Answers
L. H. S=
Answer:
1−cosα
sinα
+
1+cosα
tanα
=secα ×cosecα+cotα
L. H. S= \bold{\frac{sin \alpha }{1 - cos \alpha } + \frac{tan \alpha }{1 + cos \alpha } }
1−cosα
sinα
+
1+cosα
tanα
\implies⟹ \bold{\frac{sin \alpha }{1 - cos \alpha } + \frac{ \frac{sin \alpha }{cos \alpha } }{1 + cos \alpha } }
1−cosα
sinα
+
1+cosα
cosα
sinα
\implies⟹ \bold{[\frac{sin \alpha }{1 - cos \alpha } + \frac{sin \alpha }{cos \alpha (1 + cos \alpha )} ]}[
1−cosα
sinα
+
cosα(1+cosα)
sinα
]
\implies⟹ \bold{= sin \alpha [ \frac{1}{1 - cos} + \frac{1}{cos \alpha (1 + cos \alpha )}] }=sinα[
1−cos
1
+
cosα(1+cosα)
1
]
\implies⟹ \bold{= sin \alpha [ \frac{cos \alpha (1 + cos \alpha ) + 1 - cos \alpha }{cos \alpha (1 - {cos \alpha }^{2})}]}=sinα[
cosα(1−cosα
2
)
cosα(1+cosα)+1−cosα
]
\boxed{\sf{1 - {cos }^{2} \alpha = {sin }^{2} \alpha }}
1−cos
2
α=sin
2
α
\implies⟹ \bold{=sin \alpha [\frac{cos \alpha + {cos \alpha }^{2} + 1 - cos \alpha }{cos \alpha {sin \alpha }^{2} } ] }=sinα[
cosαsinα
2
cosα+cosα
2
+1−cosα
]
\implies⟹ \bold{=\frac{1 + {cos \alpha }^{2} }{cos \alpha \: sin \alpha } }=
cosαsinα
1+cosα
2
\implies⟹ \bold{= \frac{1}{cos \alpha \: sin \alpha \: } + \frac{ {cos \alpha }^{2} }{cos \alpha \: sin \alpha } }=
cosαsinα
1
+
cosαsinα
cosα
2
\implies⟹ \bold{= sec \alpha \: cosec \alpha \: + \frac{cos \alpha }{sin \alpha} }=secαcosecα+
sinα
cosα
\implies⟹ \bold{ sec \alpha \: cosec \alpha \: + cot \alpha }secαcosecα+cotα