Math, asked by ashikit, 1 year ago


 \frac{sin \alpha }{1 - cos \alpha }  +  \frac{tan \alpha }{1 + cos \alpha }  = sec \:  \alpha \ \times cosec \:  \alpha \:  +  \: cot \:  \alpha

Answers

Answered by Anonymous
3

\huge\text{\underline{Answer}}

\sf{\underline{Step by step explanation}}

\bold{\frac{sin \alpha }{1 - cos \alpha } + \frac{tan \alpha }{1 + cos \alpha } = sec \: \alpha \ \times cosec \: \alpha \: + \: cot \: \alpha }

L. H. S= \bold{\frac{sin \alpha }{1 - cos \alpha }  +  \frac{tan \alpha }{1 + cos \alpha } }

\implies \bold{\frac{sin \alpha }{1 - cos \alpha }  +  \frac{ \frac{sin \alpha }{cos \alpha } }{1 + cos \alpha }  }

\implies \bold{[\frac{sin \alpha }{1 - cos \alpha }  +  \frac{sin \alpha }{cos \alpha (1 + cos \alpha )} ]}

\implies \bold{= sin \alpha [ \frac{1}{1 - cos}  +  \frac{1}{cos \alpha (1 + cos \alpha )}]  }

\implies \bold{=   sin \alpha [ \frac{cos \alpha (1 + cos \alpha ) + 1 - cos \alpha }{cos \alpha (1 -  {cos \alpha }^{2})}]}

\boxed{\sf{1 -  {cos  }^{2}  \alpha  =  {sin }^{2}  \alpha  }}

\implies \bold{=sin \alpha  [\frac{cos \alpha  +  {cos \alpha }^{2} + 1 - cos \alpha  }{cos \alpha  {sin \alpha }^{2} } ] }

\implies \bold{=\frac{1 +  {cos \alpha }^{2} }{cos  \alpha \: sin \alpha } }

\implies \bold{=  \frac{1}{cos  \alpha \: sin \alpha  \: }  +  \frac{ {cos \alpha }^{2} }{cos \alpha  \: sin \alpha }  }

\implies \bold{= sec  \alpha \: cosec \alpha  \:  +  \frac{cos \alpha }{sin \alpha} }

\implies \bold{ sec  \alpha \: cosec  \alpha \:  + cot \alpha }

Answered by ayush0017
3

Answer:

1−cosα

sinα

+

1+cosα

tanα

=secα ×cosecα+cotα

L. H. S= \bold{\frac{sin \alpha }{1 - cos \alpha } + \frac{tan \alpha }{1 + cos \alpha } }

1−cosα

sinα

+

1+cosα

tanα

\implies⟹ \bold{\frac{sin \alpha }{1 - cos \alpha } + \frac{ \frac{sin \alpha }{cos \alpha } }{1 + cos \alpha } }

1−cosα

sinα

+

1+cosα

cosα

sinα

\implies⟹ \bold{[\frac{sin \alpha }{1 - cos \alpha } + \frac{sin \alpha }{cos \alpha (1 + cos \alpha )} ]}[

1−cosα

sinα

+

cosα(1+cosα)

sinα

]

\implies⟹ \bold{= sin \alpha [ \frac{1}{1 - cos} + \frac{1}{cos \alpha (1 + cos \alpha )}] }=sinα[

1−cos

1

+

cosα(1+cosα)

1

]

\implies⟹ \bold{= sin \alpha [ \frac{cos \alpha (1 + cos \alpha ) + 1 - cos \alpha }{cos \alpha (1 - {cos \alpha }^{2})}]}=sinα[

cosα(1−cosα

2

)

cosα(1+cosα)+1−cosα

]

\boxed{\sf{1 - {cos }^{2} \alpha = {sin }^{2} \alpha }}

1−cos

2

α=sin

2

α

\implies⟹ \bold{=sin \alpha [\frac{cos \alpha + {cos \alpha }^{2} + 1 - cos \alpha }{cos \alpha {sin \alpha }^{2} } ] }=sinα[

cosαsinα

2

cosα+cosα

2

+1−cosα

]

\implies⟹ \bold{=\frac{1 + {cos \alpha }^{2} }{cos \alpha \: sin \alpha } }=

cosαsinα

1+cosα

2

\implies⟹ \bold{= \frac{1}{cos \alpha \: sin \alpha \: } + \frac{ {cos \alpha }^{2} }{cos \alpha \: sin \alpha } }=

cosαsinα

1

+

cosαsinα

cosα

2

\implies⟹ \bold{= sec \alpha \: cosec \alpha \: + \frac{cos \alpha }{sin \alpha} }=secαcosecα+

sinα

cosα

\implies⟹ \bold{ sec \alpha \: cosec \alpha \: + cot \alpha }secαcosecα+cotα

Similar questions