Math, asked by BrainlyHelper, 1 year ago

\frac{sin\Theta}{1+cos\Theta} is equal to
(a)\frac{1+cos\Theta}{sin\Theta}
(b)\frac{1-cos\Theta}{sin\Theta}
(c)\frac{1-cos\Theta}{cos\Theta}
(d)\frac{1-sin\Theta}{cos\Theta}

Answers

Answered by nikitasingh79
30

Answer:

sinθ/(1 + cosθ) is equal to  (1 - cosθ)/(sinθ).

Among the given options option (b)  (1 - cosθ)/(sinθ) is correct.  

Step-by-step explanation:

Given : sinθ/(1 + cosθ)

= sinθ × (1 - cosθ)/[(1 + cosθ)(1 - cosθ)]

[Multiplying the numerator and denominator by (1 - cosθ)]

= sinθ × (1 - cosθ)/(1 - cos²θ)

[By using an identity , (a + b) (a - b) = a² - b²]

= sinθ × (1 - cosθ)/(sin²θ)

[By using  an identity, (1- cos²θ) = sin²θ]

sinθ/(1 + cosθ)  = (1 - cosθ)/(sinθ)

Hence, sinθ/(1 + cosθ) is equal to  (1 - cosθ)/(sinθ).

HOPE THIS ANSWER WILL HELP YOU...

Answered by Anonymous
45

Answer:

\displaystyle{\implies\left(\dfrac{1-\cos \theta}{\sin \theta}\right)}

Option b.  is correct .

Step-by-step explanation:

Given :

\displaystyle{\dfrac{\sin \theta}{1+\cos \theta}}

Multiplying and dividing by 1 - cos θ

\displaystyle{\dfrac{\sin \theta}{1+\cos \theta}\times\dfrac{1-\cos \theta}{1-\cos \theta}}\\\\\\\displaystyle{\dfrac{\sin \theta\left(1-\cos \theta)}{1-\cos^2 \theta}}

Now using identity

\displaystyle{1-\cos^2 \theta = \sin^2\theta }

\displaystyle{\implies\dfrac{\sin \theta\left(1-\cos \theta)}{\sin^2 \theta}}\\\\\\\displaystyle{\implies\dfrac{\sin \theta\left(1-\cos \theta)}{\sin \theta\times\sin \theta}}\\\\\\\displaystyle{\implies\left(\dfrac{1-\cos \theta}{\sin \theta}\right)}

Thus we get answer .


Anonymous: Nice one bro!
Anonymous: Thanks : )
Similar questions