Math, asked by nishantdhiman2843, 5 months ago


 \frac{sinq - cosq + 1}{sinq + cosq - 1}  =  \frac{1}{secq - tanq}

Answers

Answered by ILLUSTRIOUS27
1

Since we need secQ and tanQ in RHS we divide cosQ in whole RHS

 \rm \frac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1} = \frac{1}{sec \theta - tan \theta}

Solution-

LHS

Divide cosQ in both numerator and denominator

 \rm   \frac{ \sin \theta -  \cos \theta + 1}{ \sin \theta +  \cos \theta - 1}  \implies  \frac{ \frac{  \sin \theta}{ \cos \theta}  -  \frac{ \cos \theta}{ \cos  \theta}  +  \frac{1}{ \cos \theta} }{ \frac{ \sin \theta}{ \cos \theta}  +   \frac{ \cos \theta}{ \cos \theta} -  \frac{1}{ \cos \theta}  }  \\  \rm \implies  \frac{ \tan \theta - 1 +  \sec \theta}{ \tan \theta + 1 -  \sec \theta}

Now we multiply tanQ-secQ in both numerator and denominator

 \frac{(( \tan \theta +  \sec \theta) - 1)( \tan \theta -  \sec \theta)}{(( \tan \theta -  \sec \theta) + 1)( \tan \theta -  \sec \theta)}  \\  \implies  \frac{( \tan \theta  +   \sec \theta)( \tan  \theta -  \sec \theta) - ( \tan \theta -  \sec \theta) }{(( \tan \theta -  \sec \theta) + 1)( \tan \theta -  \sec \theta)}  \\   \rm \implies  \frac{ {tan}^{2} \theta -  {sec}^{2}  \theta -  tan \theta + sec \theta }{( \tan \theta -  \sec \theta) + 1)( \tan \theta -  \sec \theta)} \\  \rm \implies  \frac{ - (1 + tan \theta - sec \theta)}{( \tan \theta -  \sec \theta) + 1)( \tan \theta -  \sec \theta)}  \\  \implies \rm \frac{ - 1}{tan \theta - sec \theta}  =  \frac{1}{sec \theta - tan \theta}

 \rm LHS = RHS  \\  \rm hence \: proved

Similar questions