Math, asked by harikrishna2005, 11 months ago


 \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2}  }

Answers

Answered by Anonymous
3

Answer:

 \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ by \: rationalising \:  \\  \\  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\  \frac{({\sqrt{3}  -  \sqrt{2})}^{2}  }{3 - 2}  \\  \\  { (\sqrt{3} -  \sqrt{2})  }^{2}

Answered by Hiteshbehera74
2

 \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\  =  \frac{( \sqrt{3}  -  \sqrt{2} )( \sqrt{3}  -  \sqrt{2} )}{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3}  -  \sqrt{2} )}  \\  =   \frac{ { (\sqrt{3}) }^{2}  +  {(\sqrt{2}) }^{2}  - 2( \sqrt{3})( \sqrt{2})  }{ {( \sqrt{ 3}) }^{2} -  {( \sqrt{2} )}^{2}  }  \\  =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  =  \frac{5 - 2 \sqrt{6} }{1}  \\  = 5 - 2 \sqrt{6}

Similar questions