Math, asked by cnoel442, 11 months ago


 \frac{ \sqrt{3} }{ \sqrt{7} }

Answers

Answered by Anonymous
5

Answer:

\sf{ {\dfrac{ {\sqrt{21}} }{ 7}} }

Step-by-step explanation:

Given : \sf{ {\dfrac{ {\sqrt{3}} }{ {\sqrt{7}} }} }

Rationalising the denominator, we get

\succ \sf{ {\dfrac{ {\sqrt{3}} }{ {\sqrt{7}} }} \times {\dfrac{ {\sqrt{7}} }{ {\sqrt{7}} }}}

\succ \sf{ {\dfrac{ {\sqrt{3}} \times {\sqrt{7}} }{ {\sqrt{7}} \times {\sqrt{7}} }} }

\succ \sf{ {\dfrac{ {\sqrt{3 \times 7}} }{ ({\sqrt{7}} )^2 }} }

When we remove the square root over a number, the number has a power of ½.

\succ \sf{ {\dfrac{ {\sqrt{3 \times 7}} }{ (7^2)^{\frac{1}{2}} }} }

Identity : \sf{(a^m)^n = a^{mn}}

\succ \sf{ {\dfrac{ {\sqrt{3 \times 7}} }{ 7^{2 \times {\frac{1}{2}} }}} }

\succ \sf{ {\dfrac{ {\sqrt{3 \times 7}} }{ 7^{{\cancel{2}} \times {\frac{1}{{\cancel{2}}}} }}} }

\succ \sf{ {\dfrac{ {\sqrt{21}} }{ 7}}}

Answered by isafsafiya
1

Step-by-step explanation:

 \frac{ \sqrt{3} }{ \sqrt{7} }

we can multiply the this fraction with

 \sqrt{7}

we get

 \frac{ \sqrt{3} }{ \sqrt{7} }  \times  \frac{ \sqrt{7} }{ \sqrt{7} }

we get

 \frac{ \sqrt{3} \sqrt{7}  }{ \sqrt{7}  \times  \sqrt{7} }

we get

  \frac{ \sqrt{21} }{7}

Similar questions