Math, asked by dakslbpatel2121, 1 year ago


 \frac{ \sqrt{5 }  - 2}{ \sqrt{5} + 2?}  -  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}

Answers

Answered by debismita
4

Answer:

⬆️please see the attachment mate⬆️

hope it helps you

♥️Thank you ♥️

Attachments:
Answered by swati4678
19

Hii there

here is your answer

ATQ,

 \frac{ \sqrt{5 } - 2 }{ \sqrt{5}   + 2 } -  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}

We need to rationalize it.....

So,

First

 \frac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}

should be rationalised

=

 \frac{ \sqrt{5} - 2 }{ \sqrt{5}  + 2} \times   \frac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 }

=

 \frac{ { (\sqrt{5}  - 2)}^{2} }{5 - 4}

now,

5 + 4 - 20 =  - 11

Now , to rationalize the other number

 \frac{ \sqrt{5}  + 2}{ \sqrt{5} - 2 }

=

 \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2} \times  \frac{ \sqrt{5}  + 2}{ \sqrt{5} + 2 }

=

 \frac{ {( \sqrt{5}   + 2) }^{2} }{5 - 4}

5 + 2  +  20 = 27

= Now,

 \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 } -  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  - 2}

So,

= -11-(27)

= -38

Hope it helped u

plz mark as brianliest

Similar questions