Math, asked by nalinkain2507, 1 month ago


  \frac{  \sqrt{{x}^{3}}  \times  \sqrt[3]{ {x}^{5} } }{\sqrt[5]{ {x}^{3} }}   \times  \sqrt[30]{ {x}^{77} }
please solve giving step-by-step explanation.
Thank You​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{ \sqrt{{x}^{3}} \times \sqrt[3]{ {x}^{5} } }{\sqrt[5]{ {x}^{3} }} \times \sqrt[30]{ {x}^{77} }

We know,

 \boxed{\rm :\longmapsto\: \sqrt[n]{x} =  {\bigg( x\bigg) }^{\dfrac{1}{n} }  }

So,

\rm \:  =  \:  \:  \dfrac{{\bigg(x \bigg) }^{\dfrac{3}{2} } \times {\bigg(x \bigg) }^{\dfrac{5}{3} }}{{\bigg(x \bigg) }^{\dfrac{3}{5} }}  \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

We know,

 \boxed{\rm :\longmapsto\: {x}^{m} \times  {x}^{n} =  {x}^{m + n}}

\rm \:  =  \:  \:  \dfrac{{\bigg(x \bigg) }^{\dfrac{3}{2}  +  \dfrac{5}{3}}}{{\bigg(x \bigg) }^{\dfrac{3}{5} }}  \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

\rm \:  =  \:  \:  \dfrac{{\bigg(x \bigg) }^{\dfrac{9 + 10}{6}}}{{\bigg(x \bigg) }^{\dfrac{3}{5} }}  \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

\rm \:  =  \:  \:  \dfrac{{\bigg(x \bigg) }^{\dfrac{19}{6}}}{{\bigg(x \bigg) }^{\dfrac{3}{5} }}  \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

 \boxed{\rm :\longmapsto\: {x}^{m}  \div   {x}^{n} =  {x}^{m  -  n}}

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{19}{6} \:  -  \:  \dfrac{3}{5}} \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{95 - 18}{30} \:} \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{77}{30} \:} \times {\bigg(x \bigg) }^{\dfrac{77}{30} }

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{77}{30} \: +  \:  \dfrac{77}{30} }

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{154}{30} \: }

\rm \:  =  \:  \:  {\bigg(x \bigg) }^{\dfrac{77}{15} \: }

Similar questions