Math, asked by abhashrai74, 3 months ago


 \frac{  { \tan }^{2}  }{( \sec-1) } =  \frac{1 +  \ \cos  }{1 -  \cos  }

Answers

Answered by Anonymous
3

Correct Identity:-

  • \sf{\dfrac{tan^2\theta}{Sec\theta - 2} = \dfrac{1+cos\theta}{cos\theta}}

To prove:-

  • LHS = RHS

Solution:-

Taking LHS,

\sf{\dfrac{tan^2\theta}{sec\theta - 1}}

We know,

\sf{tan\theta = \dfrac{sin\theta}{cos\theta}}

And

\sf{sec\theta = \dfrac{1}{cos\theta}}

Hence,

\sf{\dfrac{\dfrac{sin^2\theta}{cos^2\theta}}{\dfrac{1}{cos\theta} - 1}}

= \sf{\dfrac{\dfrac{sin^2\theta}{cos^2\theta}}{\dfrac{1-cos\theta}{cos\theta}}}

We know,

cos²θ + sin²θ = 1

=> sin²θ = 1 - cos²θ

Therefore,

= \sf{\dfrac{1-cos^2\theta}{cos^2\theta}\times \dfrac{cos\theta}{1-cos\theta}}

= \sf{\dfrac{(1+cos\theta)(1-cos\theta)}{cos^2\theta}\times \dfrac{cos\theta}{1-cos\theta}}

= \sf{\dfrac{1+cos\theta}{cos\theta}}

Hence,

LHS = RHS [Proved]

______________________________________

Some other identities:-

  • Sin²θ + Cos²θ = 1
  • => Cos²θ = 1 - Sin²θ
  • => Sin²θ = 1 - Cos²θ
  • Tan²θ + 1 = Sec²θ
  • => Tan²θ = Sec²θ - 1
  • => Sec²θ - Tan²θ = 1
  • Cot²θ + 1 = Cosec²θ
  • => Cot²θ = Cosec²θ - 1
  • => Cosec²θ - Cot²θ = 1

______________________________________

Similar questions