Math, asked by shashwi, 2 months ago


 \frac{ {tan}^{2} x}{ {tan}^{2} x  - 1}  +  \frac{ {cosec}^{2}x }{ {sec}^{2}x -  {cosec}^{2} x }  =  \frac{1}{ {sin}^{2}x -  {cos}^{2} x}

Answers

Answered by Anonymous
3

Answer:

 \huge\star \underline{ \boxed{ \purple{Answer}}}\star

\sf\green{\frac{ {tan}^{2} x}{ {tan}^{2} x - 1} + \frac{ {cosec}^{2}x }{ {sec}^{2}x - {cosec}^{2} x }} = \pink\sf{\frac{1}{ {sin}^{2}x - {cos}^{2} x}}

Step-by-step explanation:

Given :-

\sf{\frac{ {tan}^{2} x}{ {tan}^{2} x - 1} + \frac{ {cosec}^{2}x }{ {sec}^{2}x - {cosec}^{2} x }}

To prove :-

\sf{\frac{ {tan}^{2} x}{ {tan}^{2} x - 1} + \frac{ {cosec}^{2}x }{ {sec}^{2}x - {cosec}^{2} x } = \frac{1}{ {sin}^{2}x - {cos}^{2} x}}

Solution :-

\huge\sf\red{L.H.S}

\sf{\frac{ {tan}^{2} x}{ {tan}^{2} x - 1} + \frac{ {cosec}^{2}x }{ {sec}^{2}x - {cosec}^{2} x }}

\sf{\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta}{cos^{2}\theta}-1} + \frac{\frac{1}{sin^{2}\theta}}{\frac{1}{cos^{2}\theta} - \frac{1}{sin^{2}\theta}}}

\sf{\frac{\frac{sin^{2}\theta}{cos^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{sin^{2}\theta cos^{2}\theta}} + \frac{\frac{1}{sin^{2}\theta}}{\frac{sin^{2}\theta-cos^{2}\theta}{sin^{2}\theta cos^{2}\theta }}}

\sf{\frac{ sin^{2}\theta cos^{2}\theta}{cos^{2}\theta(sin^{2}\theta - cos^{2}\theta)} + \frac{ sin^{2}\theta cos^{2}\theta}{sin^{2}\theta(sin^{2}\theta-cos^{2}\theta}}

\sf{\frac{ sin^{2}\theta}{sin^{2}\theta-cos^{2}\theta} + \frac{ cos^{2}\theta}{sin^{2}\theta-cos^{2}\theta}}

\sf{\frac{ sin^{2}\theta + cos^{2}\theta}{sin^{2}\theta - cos^{2}\theta}}

\sf{\frac{1}{sin^{2}\theta - cos^{2}\theta}}

\huge\sf\green{=\:R.H.S}

\huge\mathcal\blue{Hence \: proved}

\huge\mathfrak\pink{Hope \: it \: helps \: you}

\huge\mathfrak\pink{friend}

Similar questions