prove
LHS=RHS
Answers
Answered by
1
To prove---->
( tan³θ - 1 ) / ( tanθ - 1 ) = Sec²θ + tanθ
Proof -----> First , we solve ( tan³θ + 1 )
We know that,
( a³ - b³ ) = ( a - b ) ( a² + b² + ab ) , applying it we get,
( tan³θ - 1 ) = ( tanθ )³ - ( 1 )³
= ( tanθ - 1 ) { ( tanθ )² + ( 1 )² + ( tanθ ) ( 1 ) }
= ( tanθ - 1 ) ( tan²θ + 1 + tanθ )
We know that , ( 1 + tan²θ ) = Sec²θ , applying it here , we get ,
= ( tanθ - 1 ) ( Sec²θ + tanθ )
Now , taking , LHS
= ( tan³θ - 1 ) / ( tanθ - 1 )
Now, putting value of ( tan³θ - 1 ) , we get,
= ( tanθ - 1 ) ( Sec²θ + tanθ ) / ( tanθ - 1 )
Cancelling ( tanθ - 1 ) , from , numerator and denominator , we get,
= ( Sec²θ + tanθ ) = RHS
Similar questions