Math, asked by rishika1088, 8 months ago


 \frac{tana}{seca - 1}  +  \frac{tana}{seca + 1}  = 2coseca
solve this fast​

Answers

Answered by Anonymous
2

Solution:-

  \rm \:   \implies\dfrac{ \tan \theta }{ \sec \theta  - 1}  +  \dfrac{ \tan\theta }{ \sec \theta+ 1 }  = 2 \csc\theta

 \rm \implies \:  \dfrac{ \dfrac{ \sin\theta }{ \cos \theta} }{ \dfrac{1}{ \cos \theta} - 1 }  + \dfrac{ \dfrac{ \sin\theta }{ \cos \theta} }{ \dfrac{1}{ \cos \theta}  + 1 }

 \rm \implies \dfrac{ \dfrac{ \sin \theta}{ \cos \theta} }{ \dfrac{1 -  \cos \theta}{ \cos \theta} }  + \dfrac{ \dfrac{ \sin \theta}{ \cos \theta} }{ \dfrac{1  +   \cos \theta}{ \cos \theta} }

 \rm \implies \dfrac{ \sin \theta }{ \cos \theta}  \times  \dfrac{ \cos \theta}{1 -  \cos \theta}  + \dfrac{ \sin \theta }{ \cos \theta}  \times  \dfrac{ \cos \theta}{1  +   \cos \theta}

\rm \implies \dfrac{ \sin \theta }{  \cancel{\cos \theta}}  \times  \dfrac{ \cancel{ \cos \theta}}{1 -  \cos \theta}  + \dfrac{ \sin \theta }{  \cancel{\cos \theta}}  \times  \dfrac{  \cancel{\cos \theta}}{1  +   \cos \theta}

 \rm \implies \dfrac{ \sin \theta}{1 -  \cos \theta}  +  \dfrac{ \sin \theta}{1 +  \cos \theta}

Taking Lcm

 \rm \implies \dfrac{ \sin \theta(1 +  \cos \theta) + sin \theta(1  -   \cos \theta)}{(1 -  \cos \theta)(1 +  \cos \theta)}

 \rm \implies \:  \dfrac{ \sin \theta +  \sin \theta \cos \theta +  \sin \theta  -  \sin \theta \cos \theta}{1 -  \cos {}^{2}  \theta}

 \rm \implies \:  \dfrac{ \sin \theta +   \cancel{\sin \theta \cos \theta }+  \sin \theta  -   \cancel{\sin \theta \cos \theta}}{1 -  \cos {}^{2}  \theta}

 \rm \implies \dfrac{2 \sin \theta}{ \sin {}^{2}  \theta}

 \rm \implies \dfrac{2}{ \sin \theta}  = 2 \csc  \theta

Hence proved

Answered by ILLUSTRIOUS27
1

First we simplify LHS

LHS

 \frac{tana}{seca - 1}  +  \frac{tana}{seca + 1}

Take tanA common from the equation it is easier to do that question by taking tanA common

tana( \frac{1}{seca - 1}  +  \frac{1}{seca + 1} ) \\  = tana( \frac{seca + 1 + seca - 1}{(seca - 1)(seca + 1)})

Now in denominator use the identity (a+b)(a-b)=a^2-b^2

  => tana( \frac{2seca}{ {sec}^{2} a -  {1}^{2} }) = tana \times   \frac{2seca}{ {tan}^{2}a }   \\

Here we use sec^2A-1=tan^2A now we use

secA=1/cosA and tanA=sinA/cosA

 \frac{2seca}{tana} =  \frac{ \frac{2}{cosa} }{ \frac{sina}{cosa} }   \\  => \frac{2}{cosa }  \times  \frac{cosa}{sina}   =  \frac{2}{sina}

Now we use 1/sinA=2cosecA

 = 2coseca

LHS=2cosecA

RHS=2cosecA

LHS=RHS

Hence proved

Similar questions