Math, asked by patrikarawatdeoli, 3 months ago


 \frac{x - 1}{2  }  = 2 -  \frac{x}{3}
find the value of x​

Answers

Answered by pihu4976
0

Answer:

Hope it helps you!!!!!!

Attachments:
Answered by BrainlyPhantom
4

Solution:

Given expression:

\sf{\implies\:\dfrac{x-1}{2}=2-\dfrac{x}{3}}

Solving procedure:

First we need to include the whole number 2 in the fraction in the RHS. Here the steps are:

\sf{\longrightarrow\:\dfrac{x-1}{2}=\dfrac{2}{1}\times\dfrac{3}{3}-\dfrac{x}{3}}

\sf{\longrightarrow\:\dfrac{x-1}{2}=\dfrac{6}{3}-\dfrac{x}{3}}

\sf{\longrightarrow\:\dfrac{x-1}{2}=\dfrac{6-x}{3}}

Doing cross-multiplication:

\sf{\longrightarrow\:3(x-1)=2(6-x)}

\sf{\longrightarrow\:3x-3=12-2x}

\sf{\longrightarrow\:3x+2x=12+3}

\sf{\longrightarrow\:5x=15}

\sf{\longrightarrow\:x=\dfrac{15}{5}}

\sf{\longrightarrow\:x=3}

Henceforth the value of x is 3.

⇒ Verification:

LHS:

\sf{\maltese\:\:\dfrac{x-1}{2}}\:where\:the\:value\:of\:x\:is\:3.

\sf{=\dfrac{3-1}{2}}

\sf{=\dfrac{2}{2}}

\sf{=1}

RHS:

\sf{\maltese\:\:2-\dfrac{x}{3}\:where\:x\:is\:3.}

\sf{=2-\dfrac{3}{3}}

\sf{=2-1}

\sf{=1}

LHS = RHS

Hence verified!

Similar questions
Math, 10 months ago