Math, asked by NIMALAN166, 26 days ago


 \frac{x + 1}{x}  = 11 \: find \: the \: value \: of \:  {x }^{2}  +  \frac{1}{ {x}^{2} }
Please give the answer fast​

Answers

Answered by TYKE
3

 \underline{ \boxed{ \mathcal{ \dag \: APPROPRIATE \: QUESTION \:  \dag}}}

 \sf   \frac{x²+1}{x}  = 11 \: then \: find \: the \: value \: of \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \underline{ \boxed{ \mathcal{ \dag \: FORMULA \:  \:  USED  \:  \dag }}}

 \sf  \leadsto {x}^{2}   + \frac{1}{ {x}^{2}  } =  {(x +  \frac{1}{x}) }^{2}  - 2

 \underline{ \boxed{ \mathcal{ \dag \: SOLUTION  \:  \dag}}}

 \sf \rarr  \frac{ {x}^{2} + 1 }{x} \: can \: be \: written \: as \:  \: x +  \frac{1}{x}

 \sf \therefore  x +  \frac{1}{x}  = 11

  • Using the formula according to the question we get

 \sf \rarr {x}^{2}  +  \frac{1}{ {x}^{2}  } =  {(11)}^{2}  - 2

 \sf \rarr {x}^{2}  +  \frac{1}{ {x}^{2} }  = 121 - 2

 \sf \rarr {x}^{2}  +  \frac{1}{ {x}^{2}  } = 119

So the answer is 119

 \underline{ \boxed{ \mathcal{ \dag \: KNOW \:  MORE \:  \dag}}}

\sf \looparrowright {(a + b)}^{2} =   {a}^{2}  + 2ab +  {b}^{2}

 \sf \looparrowright {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab

 \sf \looparrowright {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

\sf \looparrowright {a}^{2}  +  {b}^{2}  =  {(a - b)}^{2} + 2

 \sf \looparrowright(a  - b)(a + b) =  {a}^{2}  -  {b}^{2}

\sf \looparrowright {(a + b)}^{2}  +  {(a - b)}^{2}  = 2( {a}^{2}  +  {b}^{2} )

 \sf \looparrowright {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab

Regards

# BeBrainly

Similar questions