Math, asked by aaryankarthikey, 1 month ago


 \frac{x - 1}{x - 2}  +  \frac{x - 3}{x - 4}  = 3 \times \frac{1}{3}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{x - 1}{x - 2}  + \dfrac{x - 3}{x - 4}  = 3\dfrac{1}{3}

On taking LCM, we get

\rm :\longmapsto\:\dfrac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)}  = \dfrac{10}{3}

\rm :\longmapsto\:\dfrac{ {x}^{2}  - x - 4x + 4 +  {x}^{2} - 3x - 2x + 6 }{ {x}^{2}  - 2x - 4x + 8}  = \dfrac{10}{3}

\rm :\longmapsto\:\dfrac{ {2x}^{2}  - 10x + 10}{ {x}^{2}  - 6x + 8}  = \dfrac{10}{3}

\rm :\longmapsto\:3( {2x}^{2} - 10x + 10) = 10( {x}^{2} - 6x + 8)

\rm :\longmapsto\:{6x}^{2} - 30x + 30 = 10{x}^{2} - 60x + 80

\rm :\longmapsto\: {4x}^{2} - 30x + 50 = 0

\rm :\longmapsto\: {2x}^{2} - 15x  + 25= 0

\rm :\longmapsto\: {2x}^{2} - 10x - 5x  + 25= 0

\rm :\longmapsto\:2x(x - 5) - 5(x - 5) = 0

\rm :\longmapsto\:(x - 5)(2x - 5) = 0

\bf\implies \:x = 5 \:  \:  \:  \: or \:  \:  \:  \: x = \dfrac{5}{2}

 \red{\boxed{ \bf{ \: Verification}}}

 \green{\bf :\longmapsto\:When \: x = 5}

Given equation is

\rm :\longmapsto\:\dfrac{x - 1}{x - 2}  + \dfrac{x - 3}{x - 4}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{5 - 1}{5 - 2}  + \dfrac{5 - 3}{5 - 4}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{4}{3}  + \dfrac{2}{1}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{4}{3}  + 2  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{4 + 6}{3}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{10}{3}  = 3\dfrac{1}{3}

\rm :\longmapsto\:3\dfrac{1}{3}  = 3\dfrac{1}{3}

Hence, Verified

 \green{\bf :\longmapsto\:When \: x =  \dfrac{5}{2} = 2.5 }

Given equation is

\rm :\longmapsto\:\dfrac{x - 1}{x - 2}  + \dfrac{x - 3}{x - 4}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{2.5 - 1}{2.5 - 2}  + \dfrac{2.5 - 3}{2.5 - 4}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{1.5}{0.5 }  + \dfrac{ - 0.5}{ - 1.5 }  = 3\dfrac{1}{3}

\rm :\longmapsto\:3 + \dfrac{1}{3}  = 3\dfrac{1}{3}

\rm :\longmapsto\:3\dfrac{1}{3}  = 3\dfrac{1}{3}

Hence, Verified

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions