Math, asked by mohamadeaziz28613, 3 months ago


 \frac{x}{2}   -  2 =  \frac{x}{3}  + 1

Answers

Answered by Yuseong
5

Answer:

18

Step-by-step explanation:

\longrightarrow \sf{ \dfrac{x}{2} - 2 = \dfrac{x}{3}  + 1 }  \\  \\ \longrightarrow \sf{ \dfrac{x - 4}{2}  = \dfrac{x}{3}  + 1  } \\  \\  \longrightarrow \sf{ \dfrac{x - 4}{2}  = \dfrac{x + 3}{3}    } \\  \\  \pmb {\rm{by \: cross \: multiplication - }} \\  \\  \\  \longrightarrow \sf{3(x - 4) = 2(x + 3)} \\  \\   \longrightarrow \sf{3x - 12 = 2x + 6} \\  \\   \longrightarrow \sf {3x - 2x =6 + 12 } \\  \\   \longrightarrow \sf \red{x = 18}

Clarification:

Here, we are given a linear equation. We have to find the value of x. Steps involved :

  • Firstly we performed subtraction in LHS .
  • Then, we performed addition in RHS.
  • After doing this, we used the cross multiplication method to solve the linear equation.
  • After that, we performed multiplication.
  • At last we transposed like terms and got the value of x.

Verification :

 \longrightarrow\sf{ \dfrac{x}{2} - 2 = \dfrac{x}{3}  + 1 }

L.H.S:

 \longrightarrow \sf { \dfrac{x}{2} - 2 } \\ \\ \longrightarrow \sf { \dfrac{18}{2} - 2 }\\ \\  \sf { 9 - 2 } \\ \\ \longrightarrow\sf \red {7 }

R.H.S:

\longrightarrow \sf { \dfrac{x}{3} +1 } \\ \\ \longrightarrow \sf { \dfrac{18}{3} + 1}\\ \\ \longrightarrow \sf { 6+ 1} \\ \\\longrightarrow \sf \red {7 }

LHS = RHS

Henceforth ,verified !!

Answered by Hezal12
0

Answer:

x = 18

Step-by-step explanation:

 \frac{x}{2}  - 2 =  \frac{x}{3}  + 1 \\  =  >  \frac{x - 4}{2}  =  \frac{x + 3}{3}  \\  by \: cross \: multiply \:  \\ =  > 3(x  -  4) = 2(x + 3) \\   =  > 3x  - 12 = 2x + 6 \\  =  > 3x - 2x =6 + 12 \\  =  > x = 18

verification  \\  =  >  \frac{x}{2}  - 2 =  \frac{x}{3}  + 1 \\  =  >  \frac{18}{2}  - 2 =  \frac{18}{3}  + 1 \\  =  >  \frac{18 - 4}{2}  =  \frac{18 + 3}{3}  \\  =  >  \frac{14}{2}  = \frac{21}{3}  \\  =  > 7 = 7 \\ so \: it \: is \: verified.

I hope this is helpful to you..............

Please follow me............

Please make me as brainliest.............

Similar questions