Math, asked by rajeshjoshi9999, 1 year ago


 \frac{ {x}^{3} - 1 }{ {x}^{2} + 2 }
मैं क्या जोड़ा जाए कि योगफल \frac{x {}^{3} - 2x {}^{2}   - 5}{ {x}^{2}  + 2} हो जाए

Answers

Answered by Swarnimkumar22
5
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}


 \frac{ {x}^{3} - 1 }{ {x}^{2} + 2 }
मैं क्या जोड़ा जाए कि योगफल \frac{x {}^{3} - 2x {}^{2} - 5}{ {x}^{2} + 2} हो जाए


\bold{\underline{Answer-}}

हल- माना अभीष्ट परिमेय व्यंजक = p(x)/q(x)


तब,
 \frac{x {}^{3}  - 1}{ {x}^{2} + 2 }  +  \frac{p(x)}{q(x)}  =  \frac{x {}^{3} -  {2x}^{2}   - 5}{ {x}^{2}  + 2}  \\  \\  \\  \\  =  >  \frac{p(x)}{q(x)}  =  \frac{ {x}^{3}  -  {2x}^{2}  - 5}{ {x}^{2} + 2 }  -  \frac{ {x}^{ 3}  + 1}{ {x}^{2} + 2 }



 =  >   \frac{ {x}^{3}  -  {2x}^{2}  - 5 -  {x}^{3}  + 1}{ {x}^{2}  + 2}  \\  \\  \\  =  >  \frac{ - 2 {x}^{2} - 4 }{ {x}^{2}  + 2}  \\  \\  \\  \\  =  >  \frac{ - 2( {x}^{2} + 2) }{( {x}^{2}  + 2)}  =  - 2
Answered by brainlystargirl
1
Heya....

===== Answer ====

Solution :-

x^3-1/x^2+2 = P(x)/q(x) = x^3-2x-5 / x^2+2

= P(x)/q(x) = x^3-2x-5/x^2+2 - x^2+1/x^2+2

= x^3-2x^2-5x-x^3+1 / x^2+2

= -2x^2-4/x^2+2 = -2x(x^2+2)/12x^2+2

= -2

So.. in the given eq u must add -2 to get the given one...

Thank you
Similar questions