Math, asked by Anonymous, 5 months ago


 \frac{ |x + 3| + x }{x + 2}  > 1 \\ \\ solve \:  \: for \:  \: x
Proper Answer pls​

Answers

Answered by hassanalihassanali06
3

Answer:

see and in the form of image.

Attachments:
Answered by Anonymous
2

  \\ \star\:\:\:\bigstar \:  \:  \:  \:  {\LARGE{ \bf{\underline{Solution}}}  }\:  \:  \: \bigstar\:\:\:\star \\  \\  \\  \\  \tt \: \frac{ |x + 3| + x }{x + 2} > 1  \\  \\  \\   \begin{array}{c ||  |c} \implies \tt\frac{ x + 3+ x }{x + 2} > 1  \:   \bigg[  \: | x + 3 | \geqslant 0 \bigg ] & \implies \tt\frac{  - (x + 3) + x }{x + 2} > 1\bigg[  \: | x + 3 |  \leqslant  0 \bigg ]   \\ \\   \\  \implies \tt \frac{2x + 3}{x + 2} > 1& \implies \tt \frac{ - 3}{x + 2}  > 1 \\  \\  \\  \implies \tt \frac{x + 1}{x + 2}  > 0& \implies \tt \frac{x + 5}{x + 2}  < 0 \\  \\  \\  \implies  \tt x \in( -  \infty, - 2) \cup ( - 1, \infty ) & \tt \implies \tt x \in( - 5, - 2)  \end{array} \\  \\  \\  \\  \implies \tt x \in (-  \infty, - 2) \cup ( - 1, \infty )  \cup( - 5, - 2) \\  \\  \\  \therefore \:  \:  \underline{ \boxed{\bf { x \in( -  \infty, - 2) \cup ( - 1, \infty )}}} \\   \\ \\ \tiny \colorbox{black}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: }  \\  \\  \small \tt \colorbox{aqua}{@StayHigh}

Similar questions