Math, asked by kaushik05, 9 months ago


 \frac{x \: dx + y \: dy}{x \: dy - y \: dx}  =  \sqrt{( \frac{ {a}^{2} -  {x}^{2}  -  {y}^{2}  }{ {x}^{2}  +  {y}^{2} }) }  \\
Differential Equation.
solve it.​

Answers

Answered by Rohit18Bhadauria
30

Given:

A differential equation

\bf{\dfrac{xdx+ydy}{xdy-ydx}=\sqrt{\dfrac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}}

To Find:

Solution of given differential equation

Solution:

Let x= rcosθ and y= rsinθ

Now,

On squaring and adding x and y, we get

\longrightarrow\mathrm{x^{2}+y^{2}=(rcos\theta)^{2}+(rsin\theta)^{2}}

\longrightarrow\mathrm{x^{2}+y^{2}=r^{2}cos^{2}\theta+r^{2}sin^{2}\theta}

\longrightarrow\mathrm{x^{2}+y^{2}=r^{2}(cos^{2}\theta+sin^{2}\theta)}

\longrightarrow\mathrm{x^{2}+y^{2}=r^{2}(1)}

\longrightarrow\mathrm{\purple{x^{2}+y^{2}=r^{2}}}--------(1)

On differentiating above equation, we get

\longrightarrow\mathrm{2xdx+2ydy=2rdr}

\longrightarrow\mathrm{\pink{xdx+ydy=rdr}}------(2)

Now, on dividing y by x, we get

\longrightarrow\mathrm{\dfrac{y}{x}=\dfrac{\cancel{r}sin\theta}{\cancel{r}cos\theta}}

\longrightarrow\mathrm{\dfrac{y}{x}=\dfrac{sin\theta}{cos\theta}}

\longrightarrow\mathrm{\dfrac{y}{x}=tan\theta}

On differentiating above equation we get

\longrightarrow\mathrm{\dfrac{xdy-ydx}{x^{2}}=sec^{2}\theta d\theta}

\longrightarrow\mathrm{xdy-ydx=x^{2}sec^{2}\theta d\theta}

\longrightarrow\mathrm{xdy-ydx=(rcos\theta)^{2}sec^{2}\theta d\theta}

\longrightarrow\mathrm{xdy-ydx=r^{2}cos^{2}\theta sec^{2}\theta d\theta}

\longrightarrow\mathrm{xdy-ydx=r^{2}\cancel{cos^{2}\theta}\dfrac{1}{\cancel{cos^{2}\theta}} d\theta}

\longrightarrow\mathrm{\green{xdy-ydx=r^{2}d\theta}}-----(3)

Now, given differential equation is

\longrightarrow\mathrm{\dfrac{xdx+ydy}{xdy-ydx}=\sqrt{\dfrac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}}

\longrightarrow\mathrm{\dfrac{xdx+ydy}{xdy-dx}=\sqrt{\dfrac{a^{2}-(x^{2}+y^{2})}{x^{2}+y^{2}}}}

From (1), (2) and (3), we get

\longrightarrow\mathrm{\dfrac{rdr}{r^{2}d\theta}=\sqrt{\dfrac{a^{2}-(r^{2})}{r^{2}}}}

\longrightarrow\mathrm{\dfrac{dr}{rd\theta}=\dfrac{\sqrt{a^{2}-r^{2}}}{\sqrt{r^{2}}}}

\longrightarrow\mathrm{\dfrac{dr}{\cancel{r}d\theta}=\dfrac{\sqrt{a^{2}-r^{2}}}{\cancel{r}}}

\longrightarrow\mathrm{\dfrac{dr}{d\theta}=\sqrt{a^{2}-r^{2}}}

\longrightarrow\mathrm{\dfrac{dr}{\sqrt{a^{2}-r^{2}}}=d\theta}

On integrating both the sides, we get

\longrightarrow\mathrm{\displaystyle\int{\dfrac{dr}{\sqrt{a^{2}-r^{2}}}}\,dr=\int\,d\theta}

\longrightarrow\mathrm{\sin^{-1}\bigg(\dfrac{r}{a}\bigg)=\theta+c}

\longrightarrow\mathrm{\dfrac{r}{a}=sin(\theta+c)}

\longrightarrow\mathrm{\dfrac{r}{a}=sin\theta cosc+cos\theta sinc}

On multiplying r with both sides, we get

\longrightarrow\mathrm{\dfrac{r^{2}}{a}=r(sin\theta cosc+cos\theta sinc)}

\longrightarrow\mathrm{\dfrac{r^{2}}{a}=rsin\theta cosc+rcos\theta sinc}

\longrightarrow\mathrm{r^{2}=a(rsin\theta cosc+rcos\theta sinc)}

From (1), we get

\longrightarrow\mathrm{x^{2}+y^{2}=a(rsin\theta cosc+rcos\theta sinc)}

On substituting rsinθ by y and rcosθ by x

\longrightarrow\mathrm{x^{2}+y^{2}=a(ycosc+xsinc)}

\red{\boxed{\mathrm{x^{2}+y^{2}=a(ycosc+xsinc)}}}

Hence, the solution of given differential equation is

x²+y²= a(ycosc+xsinc) where c is any constant

Answered by Anonymous
10

Answer:

Refer the attachment

Hope it helps

Attachments:
Similar questions