Math, asked by Rajshuklakld, 8 months ago


 \frac{x. {sec}^{2}( {x}^{2}  )}{ {tan}^{3}( {x}^{2}  )}
Integration class 12th...

good answer will be marked as brainliest

Answers

Answered by BrainlyPopularman
10

ANSWER :–

 \\ \implies { \bold{ I =  \int \dfrac{x  \: {\sec}^{2}  ( {x}^{2} )}{ {tan}^{3}( {x}^{2} ) }.dx }} \\

• We should write this as –

 \\ \implies { \bold{ I =  \int \dfrac{x  \: {\sec}^{2}  ( {x}^{2} )}{[ {tan}( {x}^{2} )]  ^{3}} .dx }} \\

▪︎ Now let's use substitution method –

• Put   \:  \: { \bold{ tan ({x}^{2} ) = t  \:  \:  - }} \\

• Now Differentiate with respect to 't' –

 \\  \:  \implies { \bold{(2x) \sec ^{2}  ({x}^{2} ). \dfrac{dx}{dt}  = 1 \:  \:  }} \\

 \\  \:  \implies { \bold{x.\sec ^{2}  ({x}^{2} ).dx =   \dfrac{1}{2}  dt \:  \:  }} \\

• So that –

 \\ \implies { \bold{ I =  \int \dfrac{dt}{2(t) ^{3}} }} \\

 \\ \implies { \bold{ I =  \int \dfrac{ {t}^{ - 3}. dt}{2} }} \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}  \int {{t}^{ - 3}. dt} }} \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}     [\dfrac{ {t}^{ - 3 + 1} }{ - 3 + 1} ] + c}}  \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}     [\dfrac{ {t}^{ - 2} }{ - 2} ] + c}}  \\

 \\  \implies{ \bold{ I = -   \dfrac{1}{4 {t}^{2} } + c}}  \\

• Now replace 't'

 \\  \implies \large{ \red{ \boxed{ \bold{ I = -   \dfrac{1}{4 { [tan( {x}^{2} )] }^{2} } + c}}}}  \\

 \rule{210}{2}

USED FORMULA :–

 \\ { \pink { \bold{(1) \:  \:  \dfrac{d ({x}^{n}) }{dx} = n {x}^{n - 1}  }}} \\

 \\ { \pink { \bold{(2) \:  \:  \dfrac{d [  tan(x) ]}{dx} =  { \sec}^{2}(x)   }}} \\

 \\ {  \pink{\bold{(3) \:  \:   \int  {x}^{n} .dx =  \dfrac{ {x}^{n + 1} }{n + 1}   }}} \\

 \rule{210}{2}

Answered by Anonymous
9

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

\star \: {\sf{\green{  \int \:  \frac{x \:  {sec}^{2} ( {x)}^{2} }{(tan {x}^{2} )^{3} } }}} \\

{\sf{\underline{\blue{Now,}}}}

 \: \star \:  \boxed{\sf{\orange{ put \: tan {x}^{2}  = t }}}

{ \underline{\bf{ diff .\: w.r.t.x}}}

{\implies{\tt{ 2x \:  {sec}^{2}  ({x}^{2})  \frac{dx}{dt}  = 1}}} \\  \\  {\implies{\tt{ x \:  {sec}^{2} dx =  \frac{1}{2} dt}}}

{\tt{ I =  \int \frac{1}{2 {t}^{3} } dt }} \\  \\{\tt{ I =  \int \frac{ {t}^{ - 3} }{2 }dt }} \\  \\

\star{\sf{\underline{\blue{integrate \: w.r.to.t,}}}}

{\tt{ I =   \frac{1}{2} \bigg[  \frac{ {t}^{ - 3 + 1} }{ - 3 + 1} \bigg] }} \\  \\

{\tt{ I =  - \frac{1}{ 4} {t}^{ - 2}    + c}} \\  \\

{\tt{ I =  - \frac{1}{  4 {t}^{  2} }    + c}} \\  \\

 \boxed{\tt{   \: where \: t =  tan {x}^{2} }}

hence

{\tt{ I =  - \frac{1}{  4(tan {x}^{2}) ^{2} }   + c}} \\  \\

\star \: {\sf{\green {\underline{ selection \: for \: proper \: substitution }}}}

  1. If the integrand contains the t-ratios of f(x) or logarithmic of f(x) or an exponential of f(x) in which the index is f(x),put f(x) = t
  2. If the integrand is rational function of e^x ,put e^x=t
Similar questions