Answers
Answered by
0
Answer :
Given,
x/y + y/x = 1
⇒ (x² + y²)/(xy) = 1
⇒ x² + y² = xy
⇒ x² + y² - xy = 0
⇒ x² - xy + y² = 0 ...(i)
Now, x³ + y³
= (x + y) (x² - xy + y²)
= (x + y) × 0, by (i)
= 0
∴ x³ + y³ = 0
#MarkAsBrainliest
Given,
x/y + y/x = 1
⇒ (x² + y²)/(xy) = 1
⇒ x² + y² = xy
⇒ x² + y² - xy = 0
⇒ x² - xy + y² = 0 ...(i)
Now, x³ + y³
= (x + y) (x² - xy + y²)
= (x + y) × 0, by (i)
= 0
∴ x³ + y³ = 0
#MarkAsBrainliest
Answered by
0
Solution:-
given by :-
》x/y+y/x = 1 , x^3+y^3= ?
》= x^2+y^2 = xy
》= x^2+y^2-xy = 0
now we have
》x^3+y^3 = (x+y)(x^2+y^2-xy)
》= x^3+y^3 = (x+y)×0
》= (x^3 +y^3 = 0)ans
given by :-
》x/y+y/x = 1 , x^3+y^3= ?
》= x^2+y^2 = xy
》= x^2+y^2-xy = 0
now we have
》x^3+y^3 = (x+y)(x^2+y^2-xy)
》= x^3+y^3 = (x+y)×0
》= (x^3 +y^3 = 0)ans
Similar questions