Math, asked by morankhiraj, 2 months ago


Give \:  A = \left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right] \:, B = \left[ \begin{array}{cc}-3 & - 2 \\ 4 & 0 \end{array} \right]  \: , C = \left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]
Find  \: \:  the  \:  \: matrix  \: \:  x \:  \:  such \:  \:  that \:  \: \\   A \:  + 2x = 2B + C

Answers

Answered by Anonymous
137

Given :-

  • \sf\: A = \left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]
  • \sf\:B=\left[ \begin{array}{cc}-3 & - 2 \\ 4 & 0 \end{array} \right]
  • \sf\:C = \left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]

To find :-

  • Matrix x.

Solution :-

A + 2x = 2B + C

:\implies\sf{\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]+2x=2\left[ \begin{array}{cc}-3 & - 2 \\ 4 & 0 \end{array} \right]+\left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]}

:\implies\sf{\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]+2x=\left[ \begin{array}{cc}-6 & - 4 \\ 8 & 0 \end{array} \right]+\left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]}

:\implies\sf{2x=\left[ \begin{array}{cc}-6 & - 4 \\ 8 & 0 \end{array} \right]+\left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]-\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]}

:\implies\sf{2x=\left[\begin{array}{cc}(-6-4-2)&(-4+0+6)\\(8+0-2)&(0+2-0)\end{array}\right]}

:\implies\sf{2x=\left[\begin{array}{cc}12&2\\6&2\end{array}\right]}

:\implies\sf{x=\dfrac{1}{2}\left[\begin{array}{cc}12&2\\6&2\end{array}\right]}

:\implies\sf{x=\left[\begin{array}{cc}6&1\\3&1\end{array}\right]}


Anonymous: Awesome! :OOO
Anonymous: Tq :OOO
Answered by BrainlyRish
132

\bf{Given \::\:} \begin{cases} A = \left[ \begin{array}{cc}2 & - 6 \\\\ 2 & 0 \end{array} \right] \:\\\\ B = \left[ \begin{array}{cc}-3 & - 2 \\\\ 4 & 0 \end{array} \right] \: \\\\ C = \left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]\end{cases}

Need To Find : \sf{\: \: The \: \: matrix \: \: x \: \: such \: \: that \: \:  A \: + 2x = 2B + C}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \underline {\bf{ \: \:  A \: + 2x = 2B + C}}

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies\sf{\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]+2x=2\left[ \begin{array}{cc}-3 & - 2 \\ 4 & 0 \end{array} \right]+\left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]}

:\implies\sf{\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]+2x=\left[ \begin{array}{cc}-6 & - 4 \\ 8 & 0 \end{array} \right]+\left[ \begin{array}{cc}-4 & 0 \\ 0 & 2 \end{array} \right]}

:\implies\sf{\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]+2x=\left[ \begin{array}{cc}-6+(-4) & - 4+0 \\ 8+0 & 0+2 \end{array} \right]}

:\implies\sf{2x= \left[ \begin{array}{cc}-6+(-4) & - 4+0 \\ 8+0 & 0+2 \end{array} \right]-\left[ \begin{array}{cc}2 & - 6 \\ 2 & 0 \end{array} \right]}

\begin{gathered}:\implies\sf{2x=\left[\begin{array}{cc}(-6-4-2)&(-4+0+6)\\(8+0-2)&(0+2-0)\end{array}\right]}\end{gathered}

:\implies\sf{2x=\left[\begin{array}{cc}12&2\\6&2\end{array}\right]}

:\implies\sf{x=\dfrac{1}{2}\left[\begin{array}{cc}12&2\\6&2\end{array}\right]}

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {x=\left[\begin{array}{cc}6&1\\3&1\end{array}\right]}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions