Math, asked by Anonymous, 3 months ago

 Given~that~p+q=x ~ \\\\ where~p= \bigg(x-\frac{1}{x}\bigg)^{\frac{1}{2}}~and~q= \bigg(1-\frac{1}{x}\bigg)^{\frac{1}{2}}\\\\ ~Find~real~values~of~x

Answers

Answered by Saby123
24

Solution -

p + q = x

Multiplying ( p - q ) to both sides of the equation

> (p - q)( p + q) = x ( p - q )

> [ p² - q² ] = x( p - q )

Now , p² = x - 1/x and q² = 1 - 1/x

So , p² - q²

> x - 1

> ( x - 1) = x( p - q )

Dividing both sides by x

> 1 - 1/x = p - q

So we get two equations

1. p + q = x

2. p - q = 1 - 1/x

Adding them

2p = x + 1 - 1/x

> 2p = ( x - 1/x ) + 1

> 2p = p² + 1

> ( p² - 2p + 1 ) = 0

Hence, p = 1

Now

p = ( x - 1/x )½

> [ x - 1/x ]^½ = 1

Squaring

> x - 1/x = 1

> x² - 1 = x

> x² - x - 1 = 0

The only real value of x possible Is the golden ratio ;

x = ( 1 + √5 ) /2 .

This is the required answer.

______________________________________

Answered by BrainlyWizzard
34

Question :

 \sf \: Given~that~p+q=x ~ \\\\   \sf \: where~p= \bigg(x-\frac{1}{x}\bigg)^{\frac{1}{2}}~and~q= \bigg(1-\frac{1}{x}\bigg)^{\frac{1}{2}}\\\\ \sf ~Find~real~values~of~x

{\bigstar \: {\underline{\pmb{\sf{\red{\underline{Required  \:  \: solution}}}}}}}

 \sf \:  \implies \: P + Q = X

Multiply ( p - q ) to both sides of the equation

  • ( p - q ) ( p + q ) = x ( p - q )

  • [ p² - q² ] = x ( p - q )

Now,

 \underline{ \boxed{ \sf{ \purple{p²  \:  = x  \frac{ - 1}{x}  \: and \:  {q}^{2} = 1 \frac{ - 1}{x}  }}}}

So :

  • p² - q²

  • x - 1

  • ( x - 1 )

  • x ( p - q )

Divide both side of x :

 \underline{ \boxed{ \sf{ {1 \frac{ - 1}{x}  = p - q}}}}

So, we get two equations

 \sf \: 1)  \: p + q = x

 \sf \: 2)  \: p - q = 1   \sf\frac{ - 1}{x}

Adding :

 \underline{ \boxed{ \sf{ \purple{2p = x + 1 \frac{ - 1}{x} }}}}

 \underline{ \boxed{ \sf{ \purple{2p = (x \frac{ - 1}{x} ) + 1}}}}

 \underline{ \boxed{ \sf{ \purple{2p =  {p}^{2} + 1 }}}}

 \underline{ \boxed{ \sf{ \purple{( {p}^{2}  - 2p + 1) = 0}}}}

Hence, p = 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \underline \red { \sf \: Now}

 \underline{ \boxed{ \sf{ \pink{p = (x - \frac{ - 1}{x}) {}^{ \frac{1}{2} }  }}}}

\underline{ \boxed{ \sf{ \pink{(x -  \frac{1}{x} {)}^{ \frac{1}{2}  }  = 1 }}}}

Squarting :

\underline{ \boxed{ \sf{ {x \frac{ - 1}{x} = 1 }}}}

\underline{ \boxed{ \sf{ { {x}^{2} - 1 = x }}}}

\underline{ \boxed{ \sf{ { {x}^{2}  - x - 1 = 0}}}}

  • The only real value of x possible is the golden ratio

\underline{ \boxed{ \sf \red{ {x =  \frac{(1 +  \sqrt{5} )}{2} }}}}

So finally your answer is done ;)

Similar questions